Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.04379
Cited By
Bayesian Semi-supervised Learning with Graph Gaussian Processes
12 September 2018
Yin Cheng Ng
Nicolo Colombo
Ricardo M. A. Silva
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Semi-supervised Learning with Graph Gaussian Processes"
14 / 14 papers shown
Title
Bayesian Optimisation of Functions on Graphs
Xingchen Wan
Pierre Osselin
Henry Kenlay
Binxin Ru
Michael A. Osborne
Xiaowen Dong
24
4
0
08 Jun 2023
Transductive Kernels for Gaussian Processes on Graphs
Yin-Cong Zhi
Felix L. Opolka
Yin Cheng Ng
Pietro Lio'
Xiaowen Dong
19
0
0
28 Nov 2022
JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks
Jian Kang
Qinghai Zhou
Hanghang Tong
UQCV
38
21
0
12 Oct 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
41
80
0
26 Oct 2021
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
35
23
0
06 Oct 2021
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
13
78
0
29 Oct 2020
Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning via Gaussian Processes
Jilin Hu
Jianbing Shen
B. Yang
Ling Shao
BDL
GNN
34
17
0
26 Feb 2020
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
Pietro Lió
GNN
27
15
0
11 Feb 2020
Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings
P. Elinas
Edwin V. Bonilla
Louis C. Tiao
BDL
GNN
21
10
0
05 Jun 2019
Graph Convolutional Gaussian Processes
Ian Walker
Ben Glocker
GNN
17
35
0
14 May 2019
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
28
5,400
0
20 Dec 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
A survey of statistical network models
Anna Goldenberg
A. Zheng
S. Fienberg
E. Airoldi
131
976
0
29 Dec 2009
1