ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.04379
  4. Cited By
Bayesian Semi-supervised Learning with Graph Gaussian Processes

Bayesian Semi-supervised Learning with Graph Gaussian Processes

12 September 2018
Yin Cheng Ng
Nicolo Colombo
Ricardo M. A. Silva
    BDL
ArXivPDFHTML

Papers citing "Bayesian Semi-supervised Learning with Graph Gaussian Processes"

14 / 14 papers shown
Title
Bayesian Optimisation of Functions on Graphs
Bayesian Optimisation of Functions on Graphs
Xingchen Wan
Pierre Osselin
Henry Kenlay
Binxin Ru
Michael A. Osborne
Xiaowen Dong
24
4
0
08 Jun 2023
Transductive Kernels for Gaussian Processes on Graphs
Transductive Kernels for Gaussian Processes on Graphs
Yin-Cong Zhi
Felix L. Opolka
Yin Cheng Ng
Pietro Lio'
Xiaowen Dong
19
0
0
28 Nov 2022
JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional
  Networks
JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks
Jian Kang
Qinghai Zhou
Hanghang Tong
UQCV
38
21
0
12 Oct 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node
  Classification
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
41
80
0
26 Oct 2021
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
35
23
0
06 Oct 2021
Matérn Gaussian Processes on Graphs
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
13
78
0
29 Oct 2020
Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
  via Gaussian Processes
Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning via Gaussian Processes
Jilin Hu
Jianbing Shen
B. Yang
Ling Shao
BDL
GNN
34
17
0
26 Feb 2020
Graph Convolutional Gaussian Processes For Link Prediction
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
Pietro Lió
GNN
27
15
0
11 Feb 2020
Variational Inference for Graph Convolutional Networks in the Absence of
  Graph Data and Adversarial Settings
Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings
P. Elinas
Edwin V. Bonilla
Louis C. Tiao
BDL
GNN
21
10
0
05 Jun 2019
Graph Convolutional Gaussian Processes
Graph Convolutional Gaussian Processes
Ian Walker
Ben Glocker
GNN
17
35
0
14 May 2019
Graph Neural Networks: A Review of Methods and Applications
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
28
5,400
0
20 Dec 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
A survey of statistical network models
A survey of statistical network models
Anna Goldenberg
A. Zheng
S. Fienberg
E. Airoldi
131
976
0
29 Dec 2009
1