Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.03063
Cited By
The Curse of Concentration in Robust Learning: Evasion and Poisoning Attacks from Concentration of Measure
9 September 2018
Saeed Mahloujifar
Dimitrios I. Diochnos
Mohammad Mahmoody
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Curse of Concentration in Robust Learning: Evasion and Poisoning Attacks from Concentration of Measure"
35 / 35 papers shown
Title
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
Ambar Pal
Huaijin Hao
Rene Vidal
28
8
0
28 Sep 2023
Robust Linear Regression: Phase-Transitions and Precise Tradeoffs for General Norms
Elvis Dohmatob
M. Scetbon
AAML
OOD
28
0
0
01 Aug 2023
It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness
Peiyu Xiong
Michael W. Tegegn
Jaskeerat Singh Sarin
Shubhraneel Pal
Julia Rubin
SILM
AAML
37
8
0
17 Mar 2023
Characterizing the Optimal 0-1 Loss for Multi-class Classification with a Test-time Attacker
Sihui Dai
Wen-Luan Ding
A. Bhagoji
Daniel Cullina
Ben Y. Zhao
Haitao Zheng
Prateek Mittal
AAML
37
2
0
21 Feb 2023
Backdoor Learning for NLP: Recent Advances, Challenges, and Future Research Directions
Marwan Omar
SILM
AAML
37
20
0
14 Feb 2023
Linking convolutional kernel size to generalization bias in face analysis CNNs
Hao Liang
J. O. Caro
Vikram Maheshri
Ankit B. Patel
Guha Balakrishnan
CVBM
CML
23
0
0
07 Feb 2023
Enhancing Quantum Adversarial Robustness by Randomized Encodings
Weiyuan Gong
D. Yuan
Weikang Li
D. Deng
AAML
26
19
0
05 Dec 2022
When are Local Queries Useful for Robust Learning?
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
OOD
40
1
0
12 Oct 2022
Sample Complexity Bounds for Robustly Learning Decision Lists against Evasion Attacks
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
AAML
21
5
0
12 May 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
39
13
0
22 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
34
13
0
26 Feb 2022
Image classifiers can not be made robust to small perturbations
Zheng Dai
David K Gifford
VLM
AAML
36
1
0
07 Dec 2021
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
38
1
0
27 Sep 2021
Universal Adversarial Examples and Perturbations for Quantum Classifiers
Weiyuan Gong
D. Deng
AAML
37
23
0
15 Feb 2021
Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses
Micah Goldblum
Dimitris Tsipras
Chulin Xie
Xinyun Chen
Avi Schwarzschild
D. Song
A. Madry
Bo-wen Li
Tom Goldstein
SILM
32
271
0
18 Dec 2020
Adversarial Classification: Necessary conditions and geometric flows
Nicolas García Trillos
Ryan W. Murray
AAML
37
19
0
21 Nov 2020
Adversarial Robust Training of Deep Learning MRI Reconstruction Models
Francesco Calivá
Kaiyang Cheng
Rutwik Shah
V. Pedoia
OOD
AAML
MedIm
30
10
0
30 Oct 2020
Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective
G. R. Machado
Eugênio Silva
R. Goldschmidt
AAML
33
157
0
08 Sep 2020
Learning from Noisy Labels with Deep Neural Networks: A Survey
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
24
964
0
16 Jul 2020
Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations
Chaoning Zhang
Philipp Benz
Tooba Imtiaz
In-So Kweon
SSL
AAML
22
118
0
13 Jul 2020
Host-Pathongen Co-evolution Inspired Algorithm Enables Robust GAN Training
Andrei Kucharavy
El-Mahdi El-Mhamdi
R. Guerraoui
GAN
24
1
0
22 May 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
39
148
0
20 May 2020
Certifying Joint Adversarial Robustness for Model Ensembles
M. Jonas
David Evans
AAML
21
2
0
21 Apr 2020
Utilizing Network Properties to Detect Erroneous Inputs
Matt Gorbett
Nathaniel Blanchard
AAML
23
6
0
28 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
38
64
0
11 Feb 2020
Label-Consistent Backdoor Attacks
Alexander Turner
Dimitris Tsipras
A. Madry
AAML
11
383
0
05 Dec 2019
Instance adaptive adversarial training: Improved accuracy tradeoffs in neural nets
Yogesh Balaji
Tom Goldstein
Judy Hoffman
AAML
134
103
0
17 Oct 2019
Quantitative Verification of Neural Networks And its Security Applications
Teodora Baluta
Shiqi Shen
Shweta Shinde
Kuldeep S. Meel
P. Saxena
AAML
24
104
0
25 Jun 2019
Lower Bounds for Adversarially Robust PAC Learning
Dimitrios I. Diochnos
Saeed Mahloujifar
Mohammad Mahmoody
AAML
27
26
0
13 Jun 2019
Adversarially Robust Learning Could Leverage Computational Hardness
Sanjam Garg
S. Jha
Saeed Mahloujifar
Mohammad Mahmoody
AAML
23
24
0
28 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
28
375
0
30 Apr 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
22
1,998
0
08 Feb 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
36
318
0
29 Jan 2019
The Limitations of Adversarial Training and the Blind-Spot Attack
Huan Zhang
Hongge Chen
Zhao Song
Duane S. Boning
Inderjit S. Dhillon
Cho-Jui Hsieh
AAML
22
144
0
15 Jan 2019
Adversarial examples from computational constraints
Sébastien Bubeck
Eric Price
Ilya P. Razenshteyn
AAML
65
230
0
25 May 2018
1