Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.02701
Cited By
Trick Me If You Can: Human-in-the-loop Generation of Adversarial Examples for Question Answering
7 September 2018
Eric Wallace
Pedro Rodriguez
Shi Feng
Ikuya Yamada
Jordan L. Boyd-Graber
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Trick Me If You Can: Human-in-the-loop Generation of Adversarial Examples for Question Answering"
8 / 8 papers shown
Title
TruthfulQA: Measuring How Models Mimic Human Falsehoods
Stephanie C. Lin
Jacob Hilton
Owain Evans
HILM
57
1,750
0
08 Sep 2021
Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision
Damien Teney
Ehsan Abbasnejad
Anton Van Den Hengel
OOD
SSL
CML
37
118
0
20 Apr 2020
Adversarial NLI: A New Benchmark for Natural Language Understanding
Yixin Nie
Adina Williams
Emily Dinan
Joey Tianyi Zhou
Jason Weston
Douwe Kiela
51
980
0
31 Oct 2019
Adversarial Attacks on Deep Learning Models in Natural Language Processing: A Survey
W. Zhang
Quan Z. Sheng
A. Alhazmi
Chenliang Li
AAML
24
57
0
21 Jan 2019
Interpreting Neural Networks With Nearest Neighbors
Eric Wallace
Shi Feng
Jordan L. Boyd-Graber
AAML
FAtt
MILM
23
53
0
08 Sep 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
304
7,005
0
20 Apr 2018
Adversarial Example Generation with Syntactically Controlled Paraphrase Networks
Mohit Iyyer
John Wieting
Kevin Gimpel
Luke Zettlemoyer
AAML
GAN
205
713
0
17 Apr 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1