ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.02601
  4. Cited By
Accelerating Deep Neural Networks with Spatial Bottleneck Modules

Accelerating Deep Neural Networks with Spatial Bottleneck Modules

7 September 2018
Junran Peng
Lingxi Xie
Zhaoxiang Zhang
Tieniu Tan
Jingdong Wang
ArXiv (abs)PDFHTML

Papers citing "Accelerating Deep Neural Networks with Spatial Bottleneck Modules"

3 / 3 papers shown
Title
SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition
SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition
Xu Hu
Yuxi Wang
Lue Fan
Junsong Fan
Junran Peng
Zhen Lei
Qing Li
Zhaoxiang Zhang
Zhaoxiang Zhang
3DGS
173
9
0
31 Jan 2024
Neural Architecture Search as Program Transformation Exploration
Neural Architecture Search as Program Transformation Exploration
Jack Turner
Elliot J. Crowley
Michael F. P. O'Boyle
62
14
0
12 Feb 2021
HBONet: Harmonious Bottleneck on Two Orthogonal Dimensions
HBONet: Harmonious Bottleneck on Two Orthogonal Dimensions
Duo Li
Aojun Zhou
Anbang Yao
52
39
0
11 Aug 2019
1