ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.02232
47
40

Automated Game Design via Conceptual Expansion

6 September 2018
Matthew J. Guzdial
Mark O. Riedl
ArXivPDFHTML
Abstract

Automated game design has remained a key challenge within the field of Game AI. In this paper, we introduce a method for recombining existing games to create new games through a process called conceptual expansion. Prior automated game design approaches have relied on hand-authored or crowd-sourced knowledge, which limits the scope and applications of such systems. Our approach instead relies on machine learning to learn approximate representations of games. Our approach recombines knowledge from these learned representations to create new games via conceptual expansion. We evaluate this approach by demonstrating the ability for the system to recreate existing games. To the best of our knowledge, this represents the first machine learning-based automated game design system.

View on arXiv
Comments on this paper