ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.00961
  4. Cited By
MSCE: An edge preserving robust loss function for improving
  super-resolution algorithms

MSCE: An edge preserving robust loss function for improving super-resolution algorithms

25 August 2018
R. Pandey
Nabagata Saha
Samarjit Karmakar
A. G. Ramakrishnan
    SupR
ArXivPDFHTML

Papers citing "MSCE: An edge preserving robust loss function for improving super-resolution algorithms"

4 / 4 papers shown
Title
Single Image Super-Resolution Based on Capsule Neural Networks
Single Image Super-Resolution Based on Capsule Neural Networks
George Correa de Araujo
Hélio Pedrini
SupR
29
0
0
06 Oct 2022
Deep learning-based Edge-aware pre and post-processing methods for JPEG
  compressed images
Deep learning-based Edge-aware pre and post-processing methods for JPEG compressed images
Dipti Mishra
S. Singh
R. Singh
26
1
0
11 Apr 2021
Hyperrealistic Image Inpainting with Hypergraphs
Hyperrealistic Image Inpainting with Hypergraphs
Gourav Wadhwa
Abhinav Dhall
Subrahmanyam Murala
Usman Tariq
GNN
23
25
0
05 Nov 2020
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
234
5,181
0
16 Sep 2016
1