ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.00958
  4. Cited By
Targeted Nonlinear Adversarial Perturbations in Images and Videos

Targeted Nonlinear Adversarial Perturbations in Images and Videos

27 August 2018
R. Rey-de-Castro
H. Rabitz
    AAML
ArXiv (abs)PDFHTML

Papers citing "Targeted Nonlinear Adversarial Perturbations in Images and Videos"

20 / 20 papers shown
Title
Data Augmentation Generative Adversarial Networks
Data Augmentation Generative Adversarial Networks
Antreas Antoniou
Amos Storkey
Harrison Edwards
MedImGAN
149
1,074
0
12 Nov 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
319
12,151
0
19 Jun 2017
A Closer Look at Memorization in Deep Networks
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
131
1,829
0
16 Jun 2017
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
João Carreira
Andrew Zisserman
240
8,045
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAttAAML
83
1,526
0
11 Apr 2017
Adversarial Transformation Networks: Learning to Generate Adversarial
  Examples
Adversarial Transformation Networks: Learning to Generate Adversarial Examples
S. Baluja
Ian S. Fischer
GAN
79
286
0
28 Mar 2017
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
351
4,636
0
10 Nov 2016
Delving into Transferable Adversarial Examples and Black-box Attacks
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
Basel Alomair
AAML
143
1,741
0
08 Nov 2016
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
164
2,534
0
26 Oct 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILMAAML
547
5,912
0
08 Jul 2016
End to End Learning for Self-Driving Cars
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
102
4,179
0
25 Apr 2016
Deep Fully-Connected Networks for Video Compressive Sensing
Deep Fully-Connected Networks for Video Compressive Sensing
Michael Iliadis
L. Spinoulas
Aggelos K. Katsaggelos
108
195
0
16 Mar 2016
Learning a Convolutional Neural Network for Non-uniform Motion Blur
  Removal
Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal
Jian Sun
Wenfei Cao
Zongben Xu
Jean Ponce
83
842
0
02 Mar 2015
Deep Image: Scaling up Image Recognition
Ren Wu
Shengen Yan
Yi Shan
Qingqing Dang
Gang Sun
VLM
94
374
0
13 Jan 2015
Image Super-Resolution Using Deep Convolutional Networks
Image Super-Resolution Using Deep Convolutional Networks
Chao Dong
Chen Change Loy
Kaiming He
Xiaoou Tang
SupR
166
8,099
0
31 Dec 2014
Object Detectors Emerge in Deep Scene CNNs
Object Detectors Emerge in Deep Scene CNNs
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
ObjD
164
1,283
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
254
4,683
0
21 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
317
7,321
0
20 Dec 2013
Some Improvements on Deep Convolutional Neural Network Based Image
  Classification
Some Improvements on Deep Convolutional Neural Network Based Image Classification
Andrew G. Howard
VLM
138
436
0
19 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
605
15,907
0
12 Nov 2013
1