ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.10026
  4. Cited By
Physically-Inspired Gaussian Process Models for Post-Transcriptional
  Regulation in Drosophila

Physically-Inspired Gaussian Process Models for Post-Transcriptional Regulation in Drosophila

29 August 2018
A. F. López-Lopera
N. Durrande
Mauricio A. Alvarez
ArXivPDFHTML

Papers citing "Physically-Inspired Gaussian Process Models for Post-Transcriptional Regulation in Drosophila"

2 / 2 papers shown
Title
Fast Kernel Approximations for Latent Force Models and Convolved
  Multiple-Output Gaussian processes
Fast Kernel Approximations for Latent Force Models and Convolved Multiple-Output Gaussian processes
Cristian Guarnizo Lemus
Mauricio A. Alvarez
48
15
0
18 May 2018
Linear Latent Force Models using Gaussian Processes
Linear Latent Force Models using Gaussian Processes
Mauricio A. Alvarez
D. Luengo
Neil D. Lawrence
72
124
0
13 Jul 2011
1