ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.09748
  4. Cited By
On spike and slab empirical Bayes multiple testing
v1v2 (latest)

On spike and slab empirical Bayes multiple testing

29 August 2018
I. Castillo
Étienne Roquain
ArXiv (abs)PDFHTML

Papers citing "On spike and slab empirical Bayes multiple testing"

18 / 18 papers shown
Title
False Discovery Rate Control via Frequentist-assisted Horseshoe
False Discovery Rate Control via Frequentist-assisted Horseshoe
Qiaoyu Liang
Zihan Zhu
Ziang Fu
Michael Evans
79
0
0
08 Feb 2025
Spike and slab empirical Bayes sparse credible sets
Spike and slab empirical Bayes sparse credible sets
I. Castillo
Botond Szabó
55
20
0
23 Aug 2018
Empirical Bayes analysis of spike and slab posterior distributions
Empirical Bayes analysis of spike and slab posterior distributions
I. Castillo
Romain Mismer
45
31
0
05 Jan 2018
Risk quantification for the thresholding rule for multiple testing using
  Gaussian scale mixtures
Risk quantification for the thresholding rule for multiple testing using Gaussian scale mixtures
J. Salomond
72
9
0
23 Nov 2017
Adaptive posterior contraction rates for the horseshoe
Adaptive posterior contraction rates for the horseshoe
S. V. D. Pas
Botond Szabó
A. van der Vaart
40
70
0
13 Feb 2017
Uncertainty quantification for the horseshoe
Uncertainty quantification for the horseshoe
S. V. D. Pas
Botond Szabó
A. van der Vaart
74
74
0
07 Jul 2016
Distribution-free Multiple Testing
Distribution-free Multiple Testing
E. Arias-Castro
Shiyun Chen
OOD
53
196
0
26 Apr 2016
SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax
SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax
Weijie Su
Emmanuel Candes
425
146
0
29 Mar 2015
The Horseshoe Estimator: Posterior Concentration around Nearly Black
  Vectors
The Horseshoe Estimator: Posterior Concentration around Nearly Black Vectors
S. V. D. Pas
B. Kleijn
A. van der Vaart
79
169
0
01 Apr 2014
Needles and Straw in a Haystack: Posterior concentration for possibly
  sparse sequences
Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences
I. Castillo
A. van der Vaart
136
251
0
06 Nov 2012
Bayes and empirical-Bayes multiplicity adjustment in the
  variable-selection problem
Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem
James G. Scott
J. Berger
138
581
0
10 Nov 2010
Asymptotic Bayes-optimality under sparsity of some multiple testing
  procedures
Asymptotic Bayes-optimality under sparsity of some multiple testing procedures
M. Bogdan
A. Chakrabarti
F. Frommlet
J. Ghosh
101
87
0
18 Feb 2010
General maximum likelihood empirical Bayes estimation of normal means
General maximum likelihood empirical Bayes estimation of normal means
Wenhua Jiang
Cun-Hui Zhang
339
215
0
12 Aug 2009
A comparison of the Benjamini-Hochberg procedure with some Bayesian
  rules for multiple testing
A comparison of the Benjamini-Hochberg procedure with some Bayesian rules for multiple testing
M. Bogdan
J. Ghosh
S. Tokdar
103
100
0
16 May 2008
Stepup procedures controlling generalized FWER and generalized FDR
Stepup procedures controlling generalized FWER and generalized FDR
S. Sarkar
522
89
0
20 Mar 2008
On optimality of Bayesian testimation in the normal means problem
On optimality of Bayesian testimation in the normal means problem
F. Abramovich
V. Grinshtein
Marianna Pensky
134
56
0
06 Dec 2007
Dependency and false discovery rate: Asymptotics
Dependency and false discovery rate: Asymptotics
H. Finner
T. Dickhaus
M. Roters
141
96
0
17 Oct 2007
Size, power and false discovery rates
Size, power and false discovery rates
B. Efron
360
423
0
11 Oct 2007
1