ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.06586
  4. Cited By
Learning Monocular Depth by Distilling Cross-domain Stereo Networks

Learning Monocular Depth by Distilling Cross-domain Stereo Networks

20 August 2018
Xiaoyang Guo
Hongsheng Li
Shuai Yi
Jimmy S. J. Ren
Xiaogang Wang
    MDE
ArXivPDFHTML

Papers citing "Learning Monocular Depth by Distilling Cross-domain Stereo Networks"

3 / 53 papers shown
Title
Refine and Distill: Exploiting Cycle-Inconsistency and Knowledge
  Distillation for Unsupervised Monocular Depth Estimation
Refine and Distill: Exploiting Cycle-Inconsistency and Knowledge Distillation for Unsupervised Monocular Depth Estimation
Andrea Pilzer
Stéphane Lathuilière
N. Sebe
Elisa Ricci
MDE
25
135
0
11 Mar 2019
Unsupervised Learning of Monocular Depth Estimation with Bundle
  Adjustment, Super-Resolution and Clip Loss
Unsupervised Learning of Monocular Depth Estimation with Bundle Adjustment, Super-Resolution and Clip Loss
Lipu Zhou
Jiamin Ye
Montiel Abello
Shengze Wang
Michael Kaess
MDE
29
27
0
08 Dec 2018
SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation
SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation
Sudeep Pillai
Rares Andrei Ambrus
Adrien Gaidon
SupR
MDE
21
216
0
03 Oct 2018
Previous
12