ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.05832
  4. Cited By
Importance mixing: Improving sample reuse in evolutionary policy search
  methods

Importance mixing: Improving sample reuse in evolutionary policy search methods

17 August 2018
Aloïs Pourchot
Nicolas Perrin
Olivier Sigaud
ArXivPDFHTML

Papers citing "Importance mixing: Improving sample reuse in evolutionary policy search methods"

3 / 3 papers shown
Title
Deep Reinforcement Learning Versus Evolution Strategies: A Comparative
  Survey
Deep Reinforcement Learning Versus Evolution Strategies: A Comparative Survey
Amjad Yousef Majid
Serge Saaybi
Tomas van Rietbergen
Vincent François-Lavet
R. V. Prasad
Chris Verhoeven
OffRL
62
54
0
28 Sep 2021
CEM-RL: Combining evolutionary and gradient-based methods for policy
  search
CEM-RL: Combining evolutionary and gradient-based methods for policy search
Aloïs Pourchot
Olivier Sigaud
32
159
0
02 Oct 2018
Policy Search in Continuous Action Domains: an Overview
Policy Search in Continuous Action Domains: an Overview
Olivier Sigaud
F. Stulp
16
72
0
13 Mar 2018
1