ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.05671
  4. Cited By
On the Convergence of Adaptive Gradient Methods for Nonconvex
  Optimization
v1v2v3v4 (latest)

On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization

16 August 2018
Dongruo Zhou
Yiqi Tang
Yuan Cao
Ziyan Yang
Quanquan Gu
ArXiv (abs)PDFHTML

Papers citing "On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization"

31 / 31 papers shown
Title
Attribute Inference Attacks for Federated Regression Tasks
Attribute Inference Attacks for Federated Regression Tasks
Francesco Diana
Othmane Marfoq
Chuan Xu
Giovanni Neglia
F. Giroire
Eoin Thomas
AAML
576
1
0
19 Nov 2024
Conjugate-Gradient-like Based Adaptive Moment Estimation Optimization Algorithm for Deep Learning
Conjugate-Gradient-like Based Adaptive Moment Estimation Optimization Algorithm for Deep Learning
Jiawu Tian
Liwei Xu
Xiaowei Zhang
Yongqi Li
ODL
87
0
0
02 Apr 2024
On Convergence of Adam for Stochastic Optimization under Relaxed Assumptions
On Convergence of Adam for Stochastic Optimization under Relaxed Assumptions
Yusu Hong
Junhong Lin
101
13
0
06 Feb 2024
A High Probability Analysis of Adaptive SGD with Momentum
A High Probability Analysis of Adaptive SGD with Momentum
Xiaoyun Li
Francesco Orabona
123
67
0
28 Jul 2020
A new regret analysis for Adam-type algorithms
A new regret analysis for Adam-type algorithms
Ahmet Alacaoglu
Yura Malitsky
P. Mertikopoulos
Volkan Cevher
ODL
62
42
0
21 Mar 2020
Towards Better Understanding of Adaptive Gradient Algorithms in
  Generative Adversarial Nets
Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets
Mingrui Liu
Youssef Mroueh
Jerret Ross
Wei Zhang
Xiaodong Cui
Payel Das
Tianbao Yang
ODL
61
63
0
26 Dec 2019
Simple and optimal high-probability bounds for strongly-convex
  stochastic gradient descent
Simple and optimal high-probability bounds for strongly-convex stochastic gradient descent
Nicholas J. A. Harvey
Christopher Liaw
Sikander Randhawa
39
37
0
02 Sep 2019
On the Convergence of Adam and Beyond
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
99
2,504
0
19 Apr 2019
A Short Note on Concentration Inequalities for Random Vectors with
  SubGaussian Norm
A Short Note on Concentration Inequalities for Random Vectors with SubGaussian Norm
Chi Jin
Praneeth Netrapalli
Rong Ge
Sham Kakade
Michael I. Jordan
100
150
0
11 Feb 2019
Tight Analyses for Non-Smooth Stochastic Gradient Descent
Tight Analyses for Non-Smooth Stochastic Gradient Descent
Nicholas J. A. Harvey
Christopher Liaw
Y. Plan
Sikander Randhawa
55
138
0
13 Dec 2018
A Sufficient Condition for Convergences of Adam and RMSProp
A Sufficient Condition for Convergences of Adam and RMSProp
Fangyu Zou
Li Shen
Zequn Jie
Weizhong Zhang
Wei Liu
61
371
0
23 Nov 2018
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex
  Optimization
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization
Xiangyi Chen
Sijia Liu
Ruoyu Sun
Mingyi Hong
58
324
0
08 Aug 2018
Convergence guarantees for RMSProp and ADAM in non-convex optimization
  and an empirical comparison to Nesterov acceleration
Convergence guarantees for RMSProp and ADAM in non-convex optimization and an empirical comparison to Nesterov acceleration
Soham De
Anirbit Mukherjee
Enayat Ullah
64
101
0
18 Jul 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
68
147
0
20 Jun 2018
Closing the Generalization Gap of Adaptive Gradient Methods in Training
  Deep Neural Networks
Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks
Jinghui Chen
Dongruo Zhou
Yiqi Tang
Ziyan Yang
Yuan Cao
Quanquan Gu
ODL
79
193
0
18 Jun 2018
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
Rachel A. Ward
Xiaoxia Wu
Léon Bottou
ODL
69
367
0
05 Jun 2018
On the Convergence of Stochastic Gradient Descent with Adaptive
  Stepsizes
On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes
Xiaoyun Li
Francesco Orabona
69
297
0
21 May 2018
How To Make the Gradients Small Stochastically: Even Faster Convex and
  Nonconvex SGD
How To Make the Gradients Small Stochastically: Even Faster Convex and Nonconvex SGD
Zeyuan Allen-Zhu
ODL
73
171
0
08 Jan 2018
Natasha 2: Faster Non-Convex Optimization Than SGD
Natasha 2: Faster Non-Convex Optimization Than SGD
Zeyuan Allen-Zhu
ODL
79
246
0
29 Aug 2017
Variants of RMSProp and Adagrad with Logarithmic Regret Bounds
Variants of RMSProp and Adagrad with Logarithmic Regret Bounds
Mahesh Chandra Mukkamala
Matthias Hein
ODL
54
258
0
17 Jun 2017
The Marginal Value of Adaptive Gradient Methods in Machine Learning
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
68
1,032
0
23 May 2017
Natasha: Faster Non-Convex Stochastic Optimization Via Strongly
  Non-Convex Parameter
Natasha: Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter
Zeyuan Allen-Zhu
62
80
0
02 Feb 2017
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
775
36,861
0
25 Aug 2016
Unified Convergence Analysis of Stochastic Momentum Methods for Convex
  and Non-convex Optimization
Unified Convergence Analysis of Stochastic Momentum Methods for Convex and Non-convex Optimization
Tianbao Yang
Qihang Lin
Zhe Li
61
122
0
12 Apr 2016
Stochastic Variance Reduction for Nonconvex Optimization
Stochastic Variance Reduction for Nonconvex Optimization
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
101
602
0
19 Mar 2016
Variance Reduction for Faster Non-Convex Optimization
Variance Reduction for Faster Non-Convex Optimization
Zeyuan Allen-Zhu
Elad Hazan
ODL
118
392
0
17 Mar 2016
Identity Mappings in Deep Residual Networks
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
354
10,192
0
16 Mar 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,260
0
22 Dec 2014
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic
  Programming
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming
Saeed Ghadimi
Guanghui Lan
ODL
122
1,555
0
22 Sep 2013
ADADELTA: An Adaptive Learning Rate Method
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
155
6,625
0
22 Dec 2012
Adaptive Bound Optimization for Online Convex Optimization
Adaptive Bound Optimization for Online Convex Optimization
H. B. McMahan
Matthew J. Streeter
ODL
101
390
0
26 Feb 2010
1