ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.05563
  4. Cited By
Learning Invariances using the Marginal Likelihood

Learning Invariances using the Marginal Likelihood

16 August 2018
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
ArXiv (abs)PDFHTML

Papers citing "Learning Invariances using the Marginal Likelihood"

20 / 20 papers shown
Title
A Complexity-Based Theory of Compositionality
A Complexity-Based Theory of Compositionality
Eric Elmoznino
Thomas Jiralerspong
Yoshua Bengio
Guillaume Lajoie
CoGe
108
10
0
18 Oct 2024
A Kernel Theory of Modern Data Augmentation
A Kernel Theory of Modern Data Augmentation
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
110
193
0
16 Mar 2018
Efficient Gaussian Process Classification Using Polya-Gamma Data
  Augmentation
Efficient Gaussian Process Classification Using Polya-Gamma Data Augmentation
F. Wenzel
Théo Galy-Fajou
Christian Donner
Marius Kloft
Manfred Opper
69
36
0
18 Feb 2018
Data Augmentation Generative Adversarial Networks
Data Augmentation Generative Adversarial Networks
Antreas Antoniou
Amos Storkey
Harrison Edwards
MedImGAN
140
1,073
0
12 Nov 2017
Convolutional Gaussian Processes
Convolutional Gaussian Processes
Mark van der Wilk
C. Rasmussen
J. Hensman
BDL
74
132
0
06 Sep 2017
Scaling up the Automatic Statistician: Scalable Structure Discovery
  using Gaussian Processes
Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes
Hyunjik Kim
Yee Whye Teh
57
52
0
08 Jun 2017
Local Group Invariant Representations via Orbit Embeddings
Local Group Invariant Representations via Orbit Embeddings
Anant Raj
Abhishek Kumar
Youssef Mroueh
Tom Fletcher
Bernhard Schölkopf
53
38
0
06 Dec 2016
Understanding Probabilistic Sparse Gaussian Process Approximations
Understanding Probabilistic Sparse Gaussian Process Approximations
Matthias Bauer
Mark van der Wilk
C. Rasmussen
54
259
0
15 Jun 2016
PAC-Bayesian Theory Meets Bayesian Inference
PAC-Bayesian Theory Meets Bayesian Inference
Pascal Germain
Francis R. Bach
Alexandre Lacoste
Simon Lacoste-Julien
68
184
0
27 May 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
171
1,945
0
24 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Dreaming More Data: Class-dependent Distributions over Diffeomorphisms
  for Learned Data Augmentation
Dreaming More Data: Class-dependent Distributions over Diffeomorphisms for Learned Data Augmentation
Søren Hauberg
Oren Freifeld
Anders Boesen Lindbo Larsen
John W. Fisher III
Lars Kai Hansen
57
154
0
09 Oct 2015
Dependent Multinomial Models Made Easy: Stick Breaking with the
  Pólya-Gamma Augmentation
Dependent Multinomial Models Made Easy: Stick Breaking with the Pólya-Gamma Augmentation
Scott W. Linderman
Matthew J. Johnson
Ryan P. Adams
55
98
0
18 Jun 2015
MCMC for Variationally Sparse Gaussian Processes
MCMC for Variationally Sparse Gaussian Processes
J. Hensman
A. G. Matthews
Maurizio Filippone
Zoubin Ghahramani
66
141
0
12 Jun 2015
Spatial Transformer Networks
Spatial Transformer Networks
Max Jaderberg
Karen Simonyan
Andrew Zisserman
Koray Kavukcuoglu
314
7,392
0
05 Jun 2015
On Sparse variational methods and the Kullback-Leibler divergence
  between stochastic processes
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
84
192
0
27 Apr 2015
Scalable Variational Gaussian Process Classification
Scalable Variational Gaussian Process Classification
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
75
645
0
07 Nov 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
107
1,235
0
26 Sep 2013
Invariances of random fields paths, with applications in Gaussian
  Process Regression
Invariances of random fields paths, with applications in Gaussian Process Regression
D. Ginsbourger
O. Roustant
N. Durrande
103
11
0
06 Aug 2013
1