Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.04728
Cited By
CosmoFlow: Using Deep Learning to Learn the Universe at Scale
14 August 2018
Amrita Mathuriya
Deborah Bard
P. Mendygral
Lawrence Meadows
James A. Arnemann
Lei Shao
Siyu He
Tuomas Kärnä
Diana Moise
S. Pennycook
K. Maschhoff
J. Sewall
Nalini Kumar
S. Ho
Michael F. Ringenburg
P. Prabhat
Victor W. Lee
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CosmoFlow: Using Deep Learning to Learn the Universe at Scale"
22 / 22 papers shown
Title
I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey
Noah Lewis
J. L. Bez
Suren Byna
62
0
0
16 Apr 2024
The Disharmony between BN and ReLU Causes Gradient Explosion, but is Offset by the Correlation between Activations
Inyoung Paik
Jaesik Choi
26
0
0
23 Apr 2023
Analyzing I/O Performance of a Hierarchical HPC Storage System for Distributed Deep Learning
Takaaki Fukai
Kento Sato
Takahiro Hirofuchi
34
2
0
04 Jan 2023
TDC: Towards Extremely Efficient CNNs on GPUs via Hardware-Aware Tucker Decomposition
Lizhi Xiang
Miao Yin
Chengming Zhang
Aravind Sukumaran-Rajam
P. Sadayappan
Bo Yuan
Dingwen Tao
3DV
27
8
0
07 Nov 2022
SOLAR: A Highly Optimized Data Loading Framework for Distributed Training of CNN-based Scientific Surrogates
Baixi Sun
Xiaodong Yu
Chengming Zhang
Jiannan Tian
Sian Jin
K. Iskra
Tao Zhou
Tekin Bicer
Pete Beckman
Dingwen Tao
32
1
0
01 Nov 2022
HammingMesh: A Network Topology for Large-Scale Deep Learning
Torsten Hoefler
Tommaso Bonato
Daniele De Sensi
Salvatore Di Girolamo
Shigang Li
Marco Heddes
Jon Belk
Deepak Goel
Miguel Castro
Steve Scott
3DH
GNN
AI4CE
32
20
0
03 Sep 2022
MLPerf HPC: A Holistic Benchmark Suite for Scientific Machine Learning on HPC Systems
S. Farrell
M. Emani
J. Balma
L. Drescher
Aleksandr Drozd
...
Akihiro Tabuchi
V. Vishwanath
Mohamed Wahib
Masafumi Yamazaki
Junqi Yin
VLM
37
35
0
21 Oct 2021
An Oracle for Guiding Large-Scale Model/Hybrid Parallel Training of Convolutional Neural Networks
A. Kahira
Truong Thao Nguyen
L. Bautista-Gomez
Ryousei Takano
Rosa M. Badia
Mohamed Wahib
21
9
0
19 Apr 2021
Using Machine Learning at Scale in HPC Simulations with SmartSim: An Application to Ocean Climate Modeling
Sam Partee
M. Ellis
Alessandro Rigazzi
S. Bachman
Gustavo M. Marques
Andrew Shao
Benjamin Robbins
AI4Cl
AI4CE
22
19
0
13 Apr 2021
Clairvoyant Prefetching for Distributed Machine Learning I/O
Nikoli Dryden
Roman Böhringer
Tal Ben-Nun
Torsten Hoefler
36
57
0
21 Jan 2021
Deep learning insights into cosmological structure formation
Luisa Lucie-Smith
H. Peiris
A. Pontzen
Brian D. Nord
Jeyan Thiyagalingam
24
6
0
20 Nov 2020
Matrix Engines for High Performance Computing:A Paragon of Performance or Grasping at Straws?
Jens Domke
Emil Vatai
Aleksandr Drozd
Peng Chen
Yosuke Oyama
...
Shweta Salaria
Daichi Mukunoki
Artur Podobas
Mohamed Wahib
Satoshi Matsuoka
32
24
0
27 Oct 2020
Accelerating Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks
J. Ellis
Lenz Fiedler
G. Popoola
N. Modine
J. A. Stephens
A. Thompson
A. Cangi
S. Rajamanickam
AI4CE
26
40
0
10 Oct 2020
Scaling Distributed Deep Learning Workloads beyond the Memory Capacity with KARMA
Mohamed Wahib
Haoyu Zhang
Truong Thao Nguyen
Aleksandr Drozd
Jens Domke
Lingqi Zhang
Ryousei Takano
Satoshi Matsuoka
OODD
34
23
0
26 Aug 2020
The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism
Yosuke Oyama
N. Maruyama
Nikoli Dryden
Erin McCarthy
P. Harrington
J. Balewski
Satoshi Matsuoka
Peter Nugent
B. Van Essen
3DV
AI4CE
34
37
0
25 Jul 2020
Response to NITRD, NCO, NSF Request for Information on "Update to the 2016 National Artificial Intelligence Research and Development Strategic Plan"
J. Amundson
J. Annis
Camille Avestruz
D. Bowring
J. Caldeira
...
N. Tran
S. Trivedi
L. Trouille
W. L. K. Wu
C. Bom
17
11
0
05 Nov 2019
Parallelizing Training of Deep Generative Models on Massive Scientific Datasets
S. A. Jacobs
B. Van Essen
D. Hysom
Jae-Seung Yeom
Tim Moon
...
J. Gaffney
Tom Benson
Peter B. Robinson
L. Peterson
B. Spears
BDL
AI4CE
22
17
0
05 Oct 2019
DisCo: Physics-Based Unsupervised Discovery of Coherent Structures in Spatiotemporal Systems
Adam T. Rupe
Nalini Kumar
V. Epifanov
K. Kashinath
O. Pavlyk
...
M. Patwary
Sergey Maidanov
Victor W. Lee
M. Prabhat
James P. Crutchfield
AI4CE
22
19
0
25 Sep 2019
Hangul Fonts Dataset: a Hierarchical and Compositional Dataset for Investigating Learned Representations
J. Livezey
Ahyeon Hwang
Jacob Yeung
K. Bouchard
36
0
0
23 May 2019
Improving Strong-Scaling of CNN Training by Exploiting Finer-Grained Parallelism
Nikoli Dryden
N. Maruyama
Tom Benson
Tim Moon
M. Snir
B. Van Essen
26
49
0
15 Mar 2019
Learning to Predict the Cosmological Structure Formation
Siyu He
Yin Li
Yu Feng
S. Ho
Siamak Ravanbakhsh
Wei Chen
Barnabás Póczós
28
168
0
15 Nov 2018
Exascale Deep Learning for Climate Analytics
Thorsten Kurth
Sean Treichler
Josh Romero
M. Mudigonda
Nathan Luehr
...
Michael A. Matheson
J. Deslippe
M. Fatica
P. Prabhat
Michael Houston
BDL
17
260
0
03 Oct 2018
1