ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.04327
  4. Cited By
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework
  for Assimilating Flow Visualization Data

Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data

13 August 2018
M. Raissi
A. Yazdani
George Karniadakis
    AI4CEPINN
ArXiv (abs)PDFHTML

Papers citing "Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data"

18 / 18 papers shown
Title
Data-driven Modeling of Combined Sewer Systems for Urban Sustainability: An Empirical Evaluation
Data-driven Modeling of Combined Sewer Systems for Urban Sustainability: An Empirical Evaluation
Vipin Singh
Tianheng Ling
Teodor Chiaburu
Felix Biessmann
AI4CE
69
1
0
21 Aug 2024
Iterative Surrogate Model Optimization (ISMO): An active learning
  algorithm for PDE constrained optimization with deep neural networks
Iterative Surrogate Model Optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks
K. Lye
Siddhartha Mishra
Deep Ray
P. Chandrasekhar
65
77
0
13 Aug 2020
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
429
5,156
0
19 Jun 2018
Forward-Backward Stochastic Neural Networks: Deep Learning of
  High-dimensional Partial Differential Equations
Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional Partial Differential Equations
M. Raissi
104
188
0
19 Apr 2018
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial
  Differential Equations
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
M. Raissi
PINNAI4CE
120
755
0
20 Jan 2018
Multistep Neural Networks for Data-driven Discovery of Nonlinear
  Dynamical Systems
Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems
M. Raissi
P. Perdikaris
George Karniadakis
PINN
149
266
0
04 Jan 2018
Physics Informed Deep Learning (Part II): Data-driven Discovery of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINNAI4CE
91
614
0
28 Nov 2017
Physics Informed Deep Learning (Part I): Data-driven Solutions of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINNAI4CE
82
931
0
28 Nov 2017
Hidden Physics Models: Machine Learning of Nonlinear Partial
  Differential Equations
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
M. Raissi
George Karniadakis
AI4CEPINN
75
1,137
0
02 Aug 2017
Parametric Gaussian Process Regression for Big Data
Parametric Gaussian Process Regression for Big Data
M. Raissi
81
39
0
11 Apr 2017
Numerical Gaussian Processes for Time-dependent and Non-linear Partial
  Differential Equations
Numerical Gaussian Processes for Time-dependent and Non-linear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
90
268
0
29 Mar 2017
Machine Learning of Linear Differential Equations using Gaussian
  Processes
Machine Learning of Linear Differential Equations using Gaussian Processes
M. Raissi
George Karniadakis
83
553
0
10 Jan 2017
Inferring solutions of differential equations using noisy multi-fidelity
  data
Inferring solutions of differential equations using noisy multi-fidelity data
M. Raissi
P. Perdikaris
George Karniadakis
AI4CE
59
290
0
16 Jul 2016
On the Expressive Power of Deep Neural Networks
On the Expressive Power of Deep Neural Networks
M. Raghu
Ben Poole
Jon M. Kleinberg
Surya Ganguli
Jascha Narain Sohl-Dickstein
63
790
0
16 Jun 2016
Deep Multi-fidelity Gaussian Processes
Deep Multi-fidelity Gaussian Processes
M. Raissi
George Karniadakis
58
55
0
26 Apr 2016
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
  Systems
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Martín Abadi
Ashish Agarwal
P. Barham
E. Brevdo
Zhiwen Chen
...
Pete Warden
Martin Wattenberg
Martin Wicke
Yuan Yu
Xiaoqiang Zheng
282
11,151
0
14 Mar 2016
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINNAI4CEODL
168
2,814
0
20 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,260
0
22 Dec 2014
1