Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.03601
Cited By
Using Randomness to Improve Robustness of Machine-Learning Models Against Evasion Attacks
10 August 2018
Fan Yang
Zhiyuan Chen
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Using Randomness to Improve Robustness of Machine-Learning Models Against Evasion Attacks"
5 / 5 papers shown
Title
On the vulnerability of fingerprint verification systems to fake fingerprint attacks
J. Galbally-Herrero
Julian Fierrez-Aguilar
J.D. Rodriguez-Gonzalez
F. Alonso-Fernandez
J. Ortega-Garcia
M. Tapiador
26
83
0
11 Jul 2022
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
Tianyu Gu
Brendan Dolan-Gavitt
S. Garg
SILM
118
1,772
0
22 Aug 2017
Robust Physical-World Attacks on Deep Learning Models
Kevin Eykholt
Ivan Evtimov
Earlence Fernandes
Yue Liu
Amir Rahmati
Chaowei Xiao
Atul Prakash
Tadayoshi Kohno
D. Song
AAML
50
595
0
27 Jul 2017
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
102
1,805
0
09 Sep 2016
Adversarial Perturbations Against Deep Neural Networks for Malware Classification
Kathrin Grosse
Nicolas Papernot
Praveen Manoharan
Michael Backes
Patrick McDaniel
AAML
64
418
0
14 Jun 2016
1