ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.03216
  4. Cited By
Data-driven polynomial chaos expansion for machine learning regression

Data-driven polynomial chaos expansion for machine learning regression

9 August 2018
Emiliano Torre
S. Marelli
P. Embrechts
Bruno Sudret
ArXivPDFHTML

Papers citing "Data-driven polynomial chaos expansion for machine learning regression"

8 / 8 papers shown
Title
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
33
75
0
07 May 2023
Generalised Latent Assimilation in Heterogeneous Reduced Spaces with
  Machine Learning Surrogate Models
Generalised Latent Assimilation in Heterogeneous Reduced Spaces with Machine Learning Surrogate Models
Sibo Cheng
Jianhua Chen
Charitos Anastasiou
P. Angeli
Omar K. Matar
Yi-Ke Guo
Christopher C. Pain
Rossella Arcucci
AI4CE
44
60
0
07 Apr 2022
PCENet: High Dimensional Surrogate Modeling for Learning Uncertainty
PCENet: High Dimensional Surrogate Modeling for Learning Uncertainty
Paz Fink Shustin
Shashanka Ubaru
Vasileios Kalantzis
L. Horesh
H. Avron
29
2
0
10 Feb 2022
Capturing and incorporating expert knowledge into machine learning
  models for quality prediction in manufacturing
Capturing and incorporating expert knowledge into machine learning models for quality prediction in manufacturing
Patrick Link
Miltiadis Poursanidis
J. Schmid
Rebekka Zache
Martin von Kurnatowski
U. Teicher
S. Ihlenfeldt
14
16
0
04 Feb 2022
Global sensitivity analysis using derivative-based sparse Poincaré
  chaos expansions
Global sensitivity analysis using derivative-based sparse Poincaré chaos expansions
Nora Lüthen
O. Roustant
Fabrice Gamboa
Bertrand Iooss
S. Marelli
Bruno Sudret
29
5
0
01 Jul 2021
Bayesian model inversion using stochastic spectral embedding
Bayesian model inversion using stochastic spectral embedding
Paul Wagner
S. Marelli
Bruno Sudret
17
14
0
15 May 2020
Replication-based emulation of the response distribution of stochastic
  simulators using generalized lambda distributions
Replication-based emulation of the response distribution of stochastic simulators using generalized lambda distributions
Xujia Zhu
Bruno Sudret
17
30
0
20 Nov 2019
Extending classical surrogate modelling to high-dimensions through
  supervised dimensionality reduction: a data-driven approach
Extending classical surrogate modelling to high-dimensions through supervised dimensionality reduction: a data-driven approach
C. Lataniotis
S. Marelli
Bruno Sudret
23
66
0
15 Dec 2018
1