Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.03030
Cited By
Policy Optimization as Wasserstein Gradient Flows
9 August 2018
Ruiyi Zhang
Changyou Chen
Chunyuan Li
Lawrence Carin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Policy Optimization as Wasserstein Gradient Flows"
44 / 44 papers shown
Title
Wasserstein Policy Optimization
David Pfau
Ian Davies
Diana Borsa
Joao G. M. Araujo
Brendan D. Tracey
H. V. Hasselt
29
0
0
01 May 2025
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Shang Wu
Yazhen Wang
43
0
0
11 Jan 2025
Linear convergence of proximal descent schemes on the Wasserstein space
Razvan-Andrei Lascu
Mateusz B. Majka
David Siska
Łukasz Szpruch
72
1
0
22 Nov 2024
Optimal Transport-Assisted Risk-Sensitive Q-Learning
Zahra Shahrooei
Ali Baheri
27
2
0
17 Jun 2024
Wasserstein gradient flow for optimal probability measure decomposition
Jiangze Han
Chris Ryan
Xin T. Tong
21
1
0
03 Jun 2024
On the Benefit of Optimal Transport for Curriculum Reinforcement Learning
Pascal Klink
Carlo DÉramo
Jan Peters
J. Pajarinen
30
3
0
25 Sep 2023
Wasserstein Diversity-Enriched Regularizer for Hierarchical Reinforcement Learning
Haorui Li
Jiaqi Liang
Linjing Li
D. Zeng
9
0
0
02 Aug 2023
Recent Advances in Optimal Transport for Machine Learning
Eduardo Fernandes Montesuma
Fred-Maurice Ngole-Mboula
Antoine Souloumiac
OOD
OT
15
31
0
28 Jun 2023
Provably Convergent Policy Optimization via Metric-aware Trust Region Methods
Jun Song
Niao He
Lijun Ding
Chaoyue Zhao
25
3
0
25 Jun 2023
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Hanna Ziesche
Leonel Rozo
24
5
0
17 May 2023
Coin Sampling: Gradient-Based Bayesian Inference without Learning Rates
Louis Sharrock
Christopher Nemeth
BDL
15
8
0
26 Jan 2023
Proximal Mean Field Learning in Shallow Neural Networks
Alexis M. H. Teter
Iman Nodozi
A. Halder
FedML
35
1
0
25 Oct 2022
Trust Region Policy Optimization with Optimal Transport Discrepancies: Duality and Algorithm for Continuous Actions
Antonio Terpin
Nicolas Lanzetti
Batuhan Yardim
Florian Dorfler
Giorgia Ramponi
11
5
0
20 Oct 2022
Batch Bayesian Optimization via Particle Gradient Flows
Enrico Crovini
S. Cotter
K. Zygalakis
Andrew B. Duncan
11
3
0
10 Sep 2022
Information-Theoretic Equivalence of Entropic Multi-Marginal Optimal Transport: A Theory for Multi-Agent Communication
Shuchan Wang
OT
20
0
0
22 Aug 2022
Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time Reinforcement Learning
Harley Wiltzer
D. Meger
Marc G. Bellemare
14
12
0
24 May 2022
A Distributed Algorithm for Measure-valued Optimization with Additive Objective
Iman Nodozi
A. Halder
15
1
0
17 Feb 2022
Wasserstein Unsupervised Reinforcement Learning
Shuncheng He
Yuhang Jiang
Hongchang Zhang
Jianzhun Shao
Xiangyang Ji
OffRL
17
22
0
15 Oct 2021
Generalized Talagrand Inequality for Sinkhorn Distance using Entropy Power Inequality
Shuchan Wang
Photios A. Stavrou
Mikael Skoglund
14
4
0
17 Sep 2021
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
Ruilin Li
H. Zha
Molei Tao
11
30
0
08 Sep 2021
Large-Scale Wasserstein Gradient Flows
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
22
71
0
01 Jun 2021
Distributionally-Constrained Policy Optimization via Unbalanced Optimal Transport
A. Givchi
Pei Wang
Junqi Wang
Patrick Shafto
OT
OffRL
11
0
0
15 Feb 2021
A contribution to Optimal Transport on incomparable spaces
Titouan Vayer
OT
17
19
0
09 Nov 2020
Hessian-Free High-Resolution Nesterov Acceleration for Sampling
Ruilin Li
H. Zha
Molei Tao
12
6
0
16 Jun 2020
Improving Adversarial Text Generation by Modeling the Distant Future
Ruiyi Zhang
Changyou Chen
Zhe Gan
Wenlin Wang
Dinghan Shen
Guoyin Wang
Zheng Wen
Lawrence Carin
22
12
0
04 May 2020
Regularizing activations in neural networks via distribution matching with the Wasserstein metric
Taejong Joo
Donggu Kang
Byunghoon Kim
27
8
0
13 Feb 2020
Nested-Wasserstein Self-Imitation Learning for Sequence Generation
Ruiyi Zhang
Changyou Chen
Zhe Gan
Zheng Wen
Wenlin Wang
Lawrence Carin
23
5
0
20 Jan 2020
Straight-Through Estimator as Projected Wasserstein Gradient Flow
Pengyu Cheng
YooJung Choi
Yitao Liang
Dinghan Shen
Ricardo Henao
Guy Van den Broeck
22
14
0
05 Oct 2019
Accelerated Information Gradient flow
Yifei Wang
Wuchen Li
15
55
0
04 Sep 2019
Learning Policies through Quantile Regression
Oliver Richter
Roger Wattenhofer
11
0
0
27 Jun 2019
Learning to Score Behaviors for Guided Policy Optimization
Aldo Pacchiano
Jack Parker-Holder
Yunhao Tang
A. Choromańska
K. Choromanski
Michael I. Jordan
11
38
0
11 Jun 2019
Stochastically Dominant Distributional Reinforcement Learning
John D. Martin
Michal Lyskawinski
Xiaohu Li
Brendan Englot
15
24
0
17 May 2019
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
30
56
0
09 May 2019
Orthogonal Estimation of Wasserstein Distances
Mark Rowland
Jiri Hron
Yunhao Tang
K. Choromanski
Tamás Sarlós
Adrian Weller
31
43
0
09 Mar 2019
Scalable Thompson Sampling via Optimal Transport
Ruiyi Zhang
Zheng Wen
Changyou Chen
Lawrence Carin
OT
8
20
0
19 Feb 2019
Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning
Casey Chu
Jose H. Blanchet
Peter Glynn
GAN
9
26
0
30 Jan 2019
Improving Sequence-to-Sequence Learning via Optimal Transport
Liqun Chen
Yizhe Zhang
Ruiyi Zhang
Chenyang Tao
Zhe Gan
Haichao Zhang
Bai Li
Dinghan Shen
Changyou Chen
Lawrence Carin
OT
6
92
0
18 Jan 2019
Accelerated Flow for Probability Distributions
Amirhossein Taghvaei
P. Mehta
23
30
0
10 Jan 2019
Variance Reduction in Stochastic Particle-Optimization Sampling
Jianyi Zhang
Yang Zhao
Changyou Chen
OT
11
13
0
20 Nov 2018
Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties
David Tellez
G. Litjens
J. A. van der Laak
R. Tavenard
F. Ciompi
OT
15
121
0
07 Nov 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
10
46
0
05 Sep 2018
Understanding and Accelerating Particle-Based Variational Inference
Chang-rui Liu
Jingwei Zhuo
Pengyu Cheng
Ruiyi Zhang
Jun Zhu
Lawrence Carin
9
14
0
04 Jul 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
13
86
0
29 May 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
279
9,136
0
06 Jun 2015
1