ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.03030
  4. Cited By
Policy Optimization as Wasserstein Gradient Flows

Policy Optimization as Wasserstein Gradient Flows

9 August 2018
Ruiyi Zhang
Changyou Chen
Chunyuan Li
Lawrence Carin
ArXivPDFHTML

Papers citing "Policy Optimization as Wasserstein Gradient Flows"

44 / 44 papers shown
Title
Wasserstein Policy Optimization
Wasserstein Policy Optimization
David Pfau
Ian Davies
Diana Borsa
Joao G. M. Araujo
Brendan D. Tracey
H. V. Hasselt
29
0
0
01 May 2025
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Shang Wu
Yazhen Wang
43
0
0
11 Jan 2025
Linear convergence of proximal descent schemes on the Wasserstein space
Linear convergence of proximal descent schemes on the Wasserstein space
Razvan-Andrei Lascu
Mateusz B. Majka
David Siska
Łukasz Szpruch
72
1
0
22 Nov 2024
Optimal Transport-Assisted Risk-Sensitive Q-Learning
Optimal Transport-Assisted Risk-Sensitive Q-Learning
Zahra Shahrooei
Ali Baheri
27
2
0
17 Jun 2024
Wasserstein gradient flow for optimal probability measure decomposition
Wasserstein gradient flow for optimal probability measure decomposition
Jiangze Han
Chris Ryan
Xin T. Tong
21
1
0
03 Jun 2024
On the Benefit of Optimal Transport for Curriculum Reinforcement
  Learning
On the Benefit of Optimal Transport for Curriculum Reinforcement Learning
Pascal Klink
Carlo DÉramo
Jan Peters
J. Pajarinen
30
3
0
25 Sep 2023
Wasserstein Diversity-Enriched Regularizer for Hierarchical
  Reinforcement Learning
Wasserstein Diversity-Enriched Regularizer for Hierarchical Reinforcement Learning
Haorui Li
Jiaqi Liang
Linjing Li
D. Zeng
9
0
0
02 Aug 2023
Recent Advances in Optimal Transport for Machine Learning
Recent Advances in Optimal Transport for Machine Learning
Eduardo Fernandes Montesuma
Fred-Maurice Ngole-Mboula
Antoine Souloumiac
OOD
OT
15
31
0
28 Jun 2023
Provably Convergent Policy Optimization via Metric-aware Trust Region
  Methods
Provably Convergent Policy Optimization via Metric-aware Trust Region Methods
Jun Song
Niao He
Lijun Ding
Chaoyue Zhao
25
3
0
25 Jun 2023
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Hanna Ziesche
Leonel Rozo
24
5
0
17 May 2023
Coin Sampling: Gradient-Based Bayesian Inference without Learning Rates
Coin Sampling: Gradient-Based Bayesian Inference without Learning Rates
Louis Sharrock
Christopher Nemeth
BDL
15
8
0
26 Jan 2023
Proximal Mean Field Learning in Shallow Neural Networks
Proximal Mean Field Learning in Shallow Neural Networks
Alexis M. H. Teter
Iman Nodozi
A. Halder
FedML
35
1
0
25 Oct 2022
Trust Region Policy Optimization with Optimal Transport Discrepancies:
  Duality and Algorithm for Continuous Actions
Trust Region Policy Optimization with Optimal Transport Discrepancies: Duality and Algorithm for Continuous Actions
Antonio Terpin
Nicolas Lanzetti
Batuhan Yardim
Florian Dorfler
Giorgia Ramponi
11
5
0
20 Oct 2022
Batch Bayesian Optimization via Particle Gradient Flows
Batch Bayesian Optimization via Particle Gradient Flows
Enrico Crovini
S. Cotter
K. Zygalakis
Andrew B. Duncan
11
3
0
10 Sep 2022
Information-Theoretic Equivalence of Entropic Multi-Marginal Optimal Transport: A Theory for Multi-Agent Communication
Shuchan Wang
OT
20
0
0
22 Aug 2022
Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time
  Reinforcement Learning
Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time Reinforcement Learning
Harley Wiltzer
D. Meger
Marc G. Bellemare
14
12
0
24 May 2022
A Distributed Algorithm for Measure-valued Optimization with Additive
  Objective
A Distributed Algorithm for Measure-valued Optimization with Additive Objective
Iman Nodozi
A. Halder
15
1
0
17 Feb 2022
Wasserstein Unsupervised Reinforcement Learning
Wasserstein Unsupervised Reinforcement Learning
Shuncheng He
Yuhang Jiang
Hongchang Zhang
Jianzhun Shao
Xiangyang Ji
OffRL
17
22
0
15 Oct 2021
Generalized Talagrand Inequality for Sinkhorn Distance using Entropy
  Power Inequality
Generalized Talagrand Inequality for Sinkhorn Distance using Entropy Power Inequality
Shuchan Wang
Photios A. Stavrou
Mikael Skoglund
14
4
0
17 Sep 2021
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
Ruilin Li
H. Zha
Molei Tao
11
30
0
08 Sep 2021
Large-Scale Wasserstein Gradient Flows
Large-Scale Wasserstein Gradient Flows
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
22
71
0
01 Jun 2021
Distributionally-Constrained Policy Optimization via Unbalanced Optimal
  Transport
Distributionally-Constrained Policy Optimization via Unbalanced Optimal Transport
A. Givchi
Pei Wang
Junqi Wang
Patrick Shafto
OT
OffRL
11
0
0
15 Feb 2021
A contribution to Optimal Transport on incomparable spaces
A contribution to Optimal Transport on incomparable spaces
Titouan Vayer
OT
17
19
0
09 Nov 2020
Hessian-Free High-Resolution Nesterov Acceleration for Sampling
Hessian-Free High-Resolution Nesterov Acceleration for Sampling
Ruilin Li
H. Zha
Molei Tao
12
6
0
16 Jun 2020
Improving Adversarial Text Generation by Modeling the Distant Future
Improving Adversarial Text Generation by Modeling the Distant Future
Ruiyi Zhang
Changyou Chen
Zhe Gan
Wenlin Wang
Dinghan Shen
Guoyin Wang
Zheng Wen
Lawrence Carin
22
12
0
04 May 2020
Regularizing activations in neural networks via distribution matching
  with the Wasserstein metric
Regularizing activations in neural networks via distribution matching with the Wasserstein metric
Taejong Joo
Donggu Kang
Byunghoon Kim
27
8
0
13 Feb 2020
Nested-Wasserstein Self-Imitation Learning for Sequence Generation
Nested-Wasserstein Self-Imitation Learning for Sequence Generation
Ruiyi Zhang
Changyou Chen
Zhe Gan
Zheng Wen
Wenlin Wang
Lawrence Carin
23
5
0
20 Jan 2020
Straight-Through Estimator as Projected Wasserstein Gradient Flow
Straight-Through Estimator as Projected Wasserstein Gradient Flow
Pengyu Cheng
YooJung Choi
Yitao Liang
Dinghan Shen
Ricardo Henao
Guy Van den Broeck
22
14
0
05 Oct 2019
Accelerated Information Gradient flow
Accelerated Information Gradient flow
Yifei Wang
Wuchen Li
15
55
0
04 Sep 2019
Learning Policies through Quantile Regression
Learning Policies through Quantile Regression
Oliver Richter
Roger Wattenhofer
11
0
0
27 Jun 2019
Learning to Score Behaviors for Guided Policy Optimization
Learning to Score Behaviors for Guided Policy Optimization
Aldo Pacchiano
Jack Parker-Holder
Yunhao Tang
A. Choromańska
K. Choromanski
Michael I. Jordan
11
38
0
11 Jun 2019
Stochastically Dominant Distributional Reinforcement Learning
Stochastically Dominant Distributional Reinforcement Learning
John D. Martin
Michal Lyskawinski
Xiaohu Li
Brendan Englot
15
24
0
17 May 2019
Stein Point Markov Chain Monte Carlo
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
30
56
0
09 May 2019
Orthogonal Estimation of Wasserstein Distances
Orthogonal Estimation of Wasserstein Distances
Mark Rowland
Jiri Hron
Yunhao Tang
K. Choromanski
Tamás Sarlós
Adrian Weller
31
43
0
09 Mar 2019
Scalable Thompson Sampling via Optimal Transport
Scalable Thompson Sampling via Optimal Transport
Ruiyi Zhang
Zheng Wen
Changyou Chen
Lawrence Carin
OT
8
20
0
19 Feb 2019
Probability Functional Descent: A Unifying Perspective on GANs,
  Variational Inference, and Reinforcement Learning
Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning
Casey Chu
Jose H. Blanchet
Peter Glynn
GAN
9
26
0
30 Jan 2019
Improving Sequence-to-Sequence Learning via Optimal Transport
Improving Sequence-to-Sequence Learning via Optimal Transport
Liqun Chen
Yizhe Zhang
Ruiyi Zhang
Chenyang Tao
Zhe Gan
Haichao Zhang
Bai Li
Dinghan Shen
Changyou Chen
Lawrence Carin
OT
6
92
0
18 Jan 2019
Accelerated Flow for Probability Distributions
Accelerated Flow for Probability Distributions
Amirhossein Taghvaei
P. Mehta
23
30
0
10 Jan 2019
Variance Reduction in Stochastic Particle-Optimization Sampling
Variance Reduction in Stochastic Particle-Optimization Sampling
Jianyi Zhang
Yang Zhao
Changyou Chen
OT
11
13
0
20 Nov 2018
Fused Gromov-Wasserstein distance for structured objects: theoretical
  foundations and mathematical properties
Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties
David Tellez
G. Litjens
J. A. van der Laak
R. Tavenard
F. Ciompi
OT
15
121
0
07 Nov 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
10
46
0
05 Sep 2018
Understanding and Accelerating Particle-Based Variational Inference
Understanding and Accelerating Particle-Based Variational Inference
Chang-rui Liu
Jingwei Zhuo
Pengyu Cheng
Ruiyi Zhang
Jun Zhu
Lawrence Carin
9
14
0
04 Jul 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
13
86
0
29 May 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
279
9,136
0
06 Jun 2015
1