ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.02941
  4. Cited By
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex
  Optimization

On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization

8 August 2018
Xiangyi Chen
Sijia Liu
Ruoyu Sun
Mingyi Hong
ArXivPDFHTML

Papers citing "On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization"

23 / 73 papers shown
Title
A General Family of Stochastic Proximal Gradient Methods for Deep
  Learning
A General Family of Stochastic Proximal Gradient Methods for Deep Learning
Jihun Yun
A. Lozano
Eunho Yang
24
12
0
15 Jul 2020
Descending through a Crowded Valley - Benchmarking Deep Learning
  Optimizers
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
50
162
0
03 Jul 2020
Taming neural networks with TUSLA: Non-convex learning via adaptive
  stochastic gradient Langevin algorithms
Taming neural networks with TUSLA: Non-convex learning via adaptive stochastic gradient Langevin algorithms
A. Lovas
Iosif Lytras
Miklós Rásonyi
Sotirios Sabanis
25
25
0
25 Jun 2020
Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
  Tighter Generalization Bounds
Private Stochastic Non-Convex Optimization: Adaptive Algorithms and Tighter Generalization Bounds
Yingxue Zhou
Xiangyi Chen
Mingyi Hong
Zhiwei Steven Wu
A. Banerjee
32
25
0
24 Jun 2020
MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of
  Gradients
MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of Gradients
Chenfei Zhu
Yu Cheng
Zhe Gan
Furong Huang
Jingjing Liu
Tom Goldstein
ODL
35
2
0
21 Jun 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine
  Learning
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
26
224
0
11 Jun 2020
Bayesian Neural Network via Stochastic Gradient Descent
Abhinav Sagar
UQCV
BDL
18
2
0
04 Jun 2020
Momentum-based variance-reduced proximal stochastic gradient method for
  composite nonconvex stochastic optimization
Momentum-based variance-reduced proximal stochastic gradient method for composite nonconvex stochastic optimization
Yangyang Xu
Yibo Xu
38
23
0
31 May 2020
MixML: A Unified Analysis of Weakly Consistent Parallel Learning
MixML: A Unified Analysis of Weakly Consistent Parallel Learning
Yucheng Lu
J. Nash
Christopher De Sa
FedML
37
12
0
14 May 2020
Stopping Criteria for, and Strong Convergence of, Stochastic Gradient
  Descent on Bottou-Curtis-Nocedal Functions
Stopping Criteria for, and Strong Convergence of, Stochastic Gradient Descent on Bottou-Curtis-Nocedal Functions
V. Patel
23
23
0
01 Apr 2020
A new regret analysis for Adam-type algorithms
A new regret analysis for Adam-type algorithms
Ahmet Alacaoglu
Yura Malitsky
P. Mertikopoulos
V. Cevher
ODL
48
42
0
21 Mar 2020
LaProp: Separating Momentum and Adaptivity in Adam
LaProp: Separating Momentum and Adaptivity in Adam
Liu Ziyin
Zhikang T.Wang
Masahito Ueda
ODL
13
18
0
12 Feb 2020
Optimization for deep learning: theory and algorithms
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
40
168
0
19 Dec 2019
ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box
  Optimization
ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization
Xiangyi Chen
Sijia Liu
Kaidi Xu
Xingguo Li
Xue Lin
Mingyi Hong
David Cox
ODL
19
105
0
15 Oct 2019
On Empirical Comparisons of Optimizers for Deep Learning
On Empirical Comparisons of Optimizers for Deep Learning
Dami Choi
Christopher J. Shallue
Zachary Nado
Jaehoon Lee
Chris J. Maddison
George E. Dahl
41
256
0
11 Oct 2019
DEAM: Adaptive Momentum with Discriminative Weight for Stochastic
  Optimization
DEAM: Adaptive Momentum with Discriminative Weight for Stochastic Optimization
Jiyang Bai
Yuxiang Ren
Jiawei Zhang
ODL
23
1
0
25 Jul 2019
Why gradient clipping accelerates training: A theoretical justification
  for adaptivity
Why gradient clipping accelerates training: A theoretical justification for adaptivity
J.N. Zhang
Tianxing He
S. Sra
Ali Jadbabaie
30
446
0
28 May 2019
Stochastic Gradient Methods with Block Diagonal Matrix Adaptation
Stochastic Gradient Methods with Block Diagonal Matrix Adaptation
Jihun Yun
A. Lozano
Eunho Yang
ODL
17
5
0
26 May 2019
Rapidly Adapting Moment Estimation
Rapidly Adapting Moment Estimation
Guoqiang Zhang
Kenta Niwa
W. Kleijn
ODL
8
0
0
24 Feb 2019
Escaping Saddle Points with Adaptive Gradient Methods
Escaping Saddle Points with Adaptive Gradient Methods
Matthew Staib
Sashank J. Reddi
Satyen Kale
Sanjiv Kumar
S. Sra
ODL
24
73
0
26 Jan 2019
DADAM: A Consensus-based Distributed Adaptive Gradient Method for Online
  Optimization
DADAM: A Consensus-based Distributed Adaptive Gradient Method for Online Optimization
Parvin Nazari
Davoud Ataee Tarzanagh
George Michailidis
ODL
29
67
0
25 Jan 2019
A Sufficient Condition for Convergences of Adam and RMSProp
A Sufficient Condition for Convergences of Adam and RMSProp
Fangyu Zou
Li Shen
Zequn Jie
Weizhong Zhang
Wei Liu
33
366
0
23 Nov 2018
Closing the Generalization Gap of Adaptive Gradient Methods in Training
  Deep Neural Networks
Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks
Jinghui Chen
Dongruo Zhou
Yiqi Tang
Ziyan Yang
Yuan Cao
Quanquan Gu
ODL
19
193
0
18 Jun 2018
Previous
12