Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.02941
Cited By
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization
8 August 2018
Xiangyi Chen
Sijia Liu
Ruoyu Sun
Mingyi Hong
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization"
23 / 73 papers shown
Title
A General Family of Stochastic Proximal Gradient Methods for Deep Learning
Jihun Yun
A. Lozano
Eunho Yang
24
12
0
15 Jul 2020
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
50
162
0
03 Jul 2020
Taming neural networks with TUSLA: Non-convex learning via adaptive stochastic gradient Langevin algorithms
A. Lovas
Iosif Lytras
Miklós Rásonyi
Sotirios Sabanis
25
25
0
25 Jun 2020
Private Stochastic Non-Convex Optimization: Adaptive Algorithms and Tighter Generalization Bounds
Yingxue Zhou
Xiangyi Chen
Mingyi Hong
Zhiwei Steven Wu
A. Banerjee
32
25
0
24 Jun 2020
MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of Gradients
Chenfei Zhu
Yu Cheng
Zhe Gan
Furong Huang
Jingjing Liu
Tom Goldstein
ODL
35
2
0
21 Jun 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
26
224
0
11 Jun 2020
Bayesian Neural Network via Stochastic Gradient Descent
Abhinav Sagar
UQCV
BDL
18
2
0
04 Jun 2020
Momentum-based variance-reduced proximal stochastic gradient method for composite nonconvex stochastic optimization
Yangyang Xu
Yibo Xu
38
23
0
31 May 2020
MixML: A Unified Analysis of Weakly Consistent Parallel Learning
Yucheng Lu
J. Nash
Christopher De Sa
FedML
37
12
0
14 May 2020
Stopping Criteria for, and Strong Convergence of, Stochastic Gradient Descent on Bottou-Curtis-Nocedal Functions
V. Patel
23
23
0
01 Apr 2020
A new regret analysis for Adam-type algorithms
Ahmet Alacaoglu
Yura Malitsky
P. Mertikopoulos
V. Cevher
ODL
48
42
0
21 Mar 2020
LaProp: Separating Momentum and Adaptivity in Adam
Liu Ziyin
Zhikang T.Wang
Masahito Ueda
ODL
13
18
0
12 Feb 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
40
168
0
19 Dec 2019
ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization
Xiangyi Chen
Sijia Liu
Kaidi Xu
Xingguo Li
Xue Lin
Mingyi Hong
David Cox
ODL
19
105
0
15 Oct 2019
On Empirical Comparisons of Optimizers for Deep Learning
Dami Choi
Christopher J. Shallue
Zachary Nado
Jaehoon Lee
Chris J. Maddison
George E. Dahl
41
256
0
11 Oct 2019
DEAM: Adaptive Momentum with Discriminative Weight for Stochastic Optimization
Jiyang Bai
Yuxiang Ren
Jiawei Zhang
ODL
23
1
0
25 Jul 2019
Why gradient clipping accelerates training: A theoretical justification for adaptivity
J.N. Zhang
Tianxing He
S. Sra
Ali Jadbabaie
30
446
0
28 May 2019
Stochastic Gradient Methods with Block Diagonal Matrix Adaptation
Jihun Yun
A. Lozano
Eunho Yang
ODL
17
5
0
26 May 2019
Rapidly Adapting Moment Estimation
Guoqiang Zhang
Kenta Niwa
W. Kleijn
ODL
8
0
0
24 Feb 2019
Escaping Saddle Points with Adaptive Gradient Methods
Matthew Staib
Sashank J. Reddi
Satyen Kale
Sanjiv Kumar
S. Sra
ODL
24
73
0
26 Jan 2019
DADAM: A Consensus-based Distributed Adaptive Gradient Method for Online Optimization
Parvin Nazari
Davoud Ataee Tarzanagh
George Michailidis
ODL
29
67
0
25 Jan 2019
A Sufficient Condition for Convergences of Adam and RMSProp
Fangyu Zou
Li Shen
Zequn Jie
Weizhong Zhang
Wei Liu
33
366
0
23 Nov 2018
Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks
Jinghui Chen
Dongruo Zhou
Yiqi Tang
Ziyan Yang
Yuan Cao
Quanquan Gu
ODL
19
193
0
18 Jun 2018
Previous
1
2