ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.01204
  4. Cited By
Learning Overparameterized Neural Networks via Stochastic Gradient
  Descent on Structured Data

Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data

3 August 2018
Yuanzhi Li
Yingyu Liang
    MLT
ArXivPDFHTML

Papers citing "Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data"

50 / 176 papers shown
Title
Generalized Leverage Score Sampling for Neural Networks
Generalized Leverage Score Sampling for Neural Networks
Jason D. Lee
Ruoqi Shen
Zhao Song
Mengdi Wang
Zheng Yu
26
42
0
21 Sep 2020
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy
Zuyue Fu
Zhuoran Yang
Zhaoran Wang
21
42
0
02 Aug 2020
Implicit Bias in Deep Linear Classification: Initialization Scale vs
  Training Accuracy
Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy
E. Moroshko
Suriya Gunasekar
Blake E. Woodworth
Jason D. Lee
Nathan Srebro
Daniel Soudry
35
85
0
13 Jul 2020
Weak error analysis for stochastic gradient descent optimization
  algorithms
Weak error analysis for stochastic gradient descent optimization algorithms
A. Bercher
Lukas Gonon
Arnulf Jentzen
Diyora Salimova
36
4
0
03 Jul 2020
A Revision of Neural Tangent Kernel-based Approaches for Neural Networks
Kyungsu Kim
A. Lozano
Eunho Yang
AAML
40
0
0
02 Jul 2020
Training (Overparametrized) Neural Networks in Near-Linear Time
Training (Overparametrized) Neural Networks in Near-Linear Time
Jan van den Brand
Binghui Peng
Zhao Song
Omri Weinstein
ODL
34
83
0
20 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
Jason D. Lee
Tengyu Ma
32
94
0
15 Jun 2020
Non-convergence of stochastic gradient descent in the training of deep
  neural networks
Non-convergence of stochastic gradient descent in the training of deep neural networks
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
19
37
0
12 Jun 2020
Can Temporal-Difference and Q-Learning Learn Representation? A
  Mean-Field Theory
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
Yufeng Zhang
Qi Cai
Zhuoran Yang
Yongxin Chen
Zhaoran Wang
OOD
MLT
159
11
0
08 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep
  Learning
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
39
148
0
20 May 2020
Symmetry & critical points for a model shallow neural network
Symmetry & critical points for a model shallow neural network
Yossi Arjevani
M. Field
36
13
0
23 Mar 2020
The large learning rate phase of deep learning: the catapult mechanism
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
159
236
0
04 Mar 2020
Convex Geometry and Duality of Over-parameterized Neural Networks
Convex Geometry and Duality of Over-parameterized Neural Networks
Tolga Ergen
Mert Pilanci
MLT
47
54
0
25 Feb 2020
Convergence of End-to-End Training in Deep Unsupervised Contrastive
  Learning
Convergence of End-to-End Training in Deep Unsupervised Contrastive Learning
Zixin Wen
SSL
21
2
0
17 Feb 2020
Over-parameterized Adversarial Training: An Analysis Overcoming the
  Curse of Dimensionality
Over-parameterized Adversarial Training: An Analysis Overcoming the Curse of Dimensionality
Yi Zhang
Orestis Plevrakis
S. Du
Xingguo Li
Zhao Song
Sanjeev Arora
29
51
0
16 Feb 2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
  Trained with the Logistic Loss
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
Francis R. Bach
MLT
39
329
0
11 Feb 2020
Distribution Approximation and Statistical Estimation Guarantees of
  Generative Adversarial Networks
Distribution Approximation and Statistical Estimation Guarantees of Generative Adversarial Networks
Minshuo Chen
Wenjing Liao
H. Zha
Tuo Zhao
26
15
0
10 Feb 2020
Memory capacity of neural networks with threshold and ReLU activations
Memory capacity of neural networks with threshold and ReLU activations
Roman Vershynin
31
21
0
20 Jan 2020
Landscape Connectivity and Dropout Stability of SGD Solutions for
  Over-parameterized Neural Networks
Landscape Connectivity and Dropout Stability of SGD Solutions for Over-parameterized Neural Networks
A. Shevchenko
Marco Mondelli
27
37
0
20 Dec 2019
Optimization for deep learning: theory and algorithms
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
30
168
0
19 Dec 2019
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
38
225
0
05 Dec 2019
Towards Understanding the Spectral Bias of Deep Learning
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
41
215
0
03 Dec 2019
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and
  Algorithms
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms
Kaipeng Zhang
Zhuoran Yang
Tamer Basar
63
1,184
0
24 Nov 2019
Neural Contextual Bandits with UCB-based Exploration
Neural Contextual Bandits with UCB-based Exploration
Dongruo Zhou
Lihong Li
Quanquan Gu
36
15
0
11 Nov 2019
Enhanced Convolutional Neural Tangent Kernels
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
24
131
0
03 Nov 2019
Capacity, Bandwidth, and Compositionality in Emergent Language Learning
Capacity, Bandwidth, and Compositionality in Emergent Language Learning
Cinjon Resnick
Abhinav Gupta
Jakob N. Foerster
Andrew M. Dai
Kyunghyun Cho
31
51
0
24 Oct 2019
The Local Elasticity of Neural Networks
The Local Elasticity of Neural Networks
Hangfeng He
Weijie J. Su
45
44
0
15 Oct 2019
Algorithm-Dependent Generalization Bounds for Overparameterized Deep
  Residual Networks
Algorithm-Dependent Generalization Bounds for Overparameterized Deep Residual Networks
Spencer Frei
Yuan Cao
Quanquan Gu
ODL
14
31
0
07 Oct 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
22
161
0
03 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of
  Wide Neural Networks
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
Jason D. Lee
24
116
0
03 Oct 2019
How does topology influence gradient propagation and model performance
  of deep networks with DenseNet-type skip connections?
How does topology influence gradient propagation and model performance of deep networks with DenseNet-type skip connections?
Kartikeya Bhardwaj
Guihong Li
R. Marculescu
38
1
0
02 Oct 2019
Stochastic AUC Maximization with Deep Neural Networks
Stochastic AUC Maximization with Deep Neural Networks
Mingrui Liu
Zhuoning Yuan
Yiming Ying
Tianbao Yang
27
103
0
28 Aug 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and
  Generalization
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
40
161
0
25 Aug 2019
The generalization error of random features regression: Precise
  asymptotics and double descent curve
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
62
625
0
14 Aug 2019
Hessian based analysis of SGD for Deep Nets: Dynamics and Generalization
Hessian based analysis of SGD for Deep Nets: Dynamics and Generalization
Xinyan Li
Qilong Gu
Yingxue Zhou
Tiancong Chen
A. Banerjee
ODL
42
51
0
24 Jul 2019
Benign Overfitting in Linear Regression
Benign Overfitting in Linear Regression
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
8
763
0
26 Jun 2019
Neural Proximal/Trust Region Policy Optimization Attains Globally
  Optimal Policy
Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy
Boyi Liu
Qi Cai
Zhuoran Yang
Zhaoran Wang
30
108
0
25 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
Jason D. Lee
Daniel Soudry
Nathan Srebro
30
353
0
13 Jun 2019
Parameterized Structured Pruning for Deep Neural Networks
Parameterized Structured Pruning for Deep Neural Networks
Günther Schindler
Wolfgang Roth
Franz Pernkopf
Holger Froening
24
6
0
12 Jun 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep
  Neural Networks
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
37
383
0
30 May 2019
Overlearning Reveals Sensitive Attributes
Overlearning Reveals Sensitive Attributes
Congzheng Song
Vitaly Shmatikov
19
148
0
28 May 2019
SGD on Neural Networks Learns Functions of Increasing Complexity
SGD on Neural Networks Learns Functions of Increasing Complexity
Preetum Nakkiran
Gal Kaplun
Dimitris Kalimeris
Tristan Yang
Benjamin L. Edelman
Fred Zhang
Boaz Barak
MLT
28
236
0
28 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized
  Neural Networks
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
22
124
0
27 May 2019
Enhancing Adversarial Defense by k-Winners-Take-All
Enhancing Adversarial Defense by k-Winners-Take-All
Chang Xiao
Peilin Zhong
Changxi Zheng
AAML
24
97
0
25 May 2019
What Can ResNet Learn Efficiently, Going Beyond Kernels?
What Can ResNet Learn Efficiently, Going Beyond Kernels?
Zeyuan Allen-Zhu
Yuanzhi Li
24
183
0
24 May 2019
Neural Temporal-Difference and Q-Learning Provably Converge to Global
  Optima
Neural Temporal-Difference and Q-Learning Provably Converge to Global Optima
Qi Cai
Zhuoran Yang
Jason D. Lee
Zhaoran Wang
42
29
0
24 May 2019
Gradient Descent can Learn Less Over-parameterized Two-layer Neural
  Networks on Classification Problems
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
16
33
0
23 May 2019
How degenerate is the parametrization of neural networks with the ReLU
  activation function?
How degenerate is the parametrization of neural networks with the ReLU activation function?
Julius Berner
Dennis Elbrächter
Philipp Grohs
ODL
33
28
0
23 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz
  Augmentation
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
25
109
0
09 May 2019
On Exact Computation with an Infinitely Wide Neural Net
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
65
906
0
26 Apr 2019
Previous
1234
Next