Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.01174
Cited By
Generalization Error in Deep Learning
3 August 2018
Daniel Jakubovitz
Raja Giryes
M. Rodrigues
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generalization Error in Deep Learning"
50 / 58 papers shown
Title
A Near Complete Nonasymptotic Generalization Theory For Multilayer Neural Networks: Beyond the Bias-Variance Tradeoff
Hao Yu
Xiangyang Ji
AI4CE
58
0
0
03 Mar 2025
Data-Dependent Generalization Bounds for Parameterized Quantum Models Under Noise
Bikram Khanal
Pablo Rivas
87
0
0
16 Dec 2024
Generalization Error Bound for Quantum Machine Learning in NISQ Era -- A Survey
Bikram Khanal
Pablo Rivas
Arun Sanjel
Korn Sooksatra
Ernesto Quevedo
Alejandro Rodriguez
28
2
0
11 Sep 2024
Universal Novelty Detection Through Adaptive Contrastive Learning
Hossein Mirzaei
Mojtaba Nafez
Mohammad Jafari
Mohammad Bagher Soltani
Mohammad Azizmalayeri
Jafar Habibi
Mohammad Sabokrou
M. Rohban
29
4
0
20 Aug 2024
Bias of Stochastic Gradient Descent or the Architecture: Disentangling the Effects of Overparameterization of Neural Networks
Amit Peleg
Matthias Hein
39
0
0
04 Jul 2024
Neural Operators Learn the Local Physics of Magnetohydrodynamics
Taeyoung Kim
Youngsoo Ha
Myungjoo Kang
AI4CE
29
0
0
24 Apr 2024
Information-Theoretic Generalization Bounds for Deep Neural Networks
Haiyun He
Christina Lee Yu
35
4
0
04 Apr 2024
Self-Correcting Self-Consuming Loops for Generative Model Training
Nate Gillman
Michael Freeman
Daksh Aggarwal
Chia-Hong Hsu
Calvin Luo
Yonglong Tian
Chen Sun
33
13
0
11 Feb 2024
Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss
Yahong Yang
Juncai He
AI4CE
32
7
0
31 Jan 2024
Approximating Numerical Fluxes Using Fourier Neural Operators for Hyperbolic Conservation Laws
Taeyoung Kim
Myungjoo Kang
AI4CE
25
2
0
03 Jan 2024
Understanding and Leveraging the Learning Phases of Neural Networks
Johannes Schneider
Mohit Prabhushankar
AI4CE
14
0
0
11 Dec 2023
On the Stability of Iterative Retraining of Generative Models on their own Data
Quentin Bertrand
A. Bose
Alexandre Duplessis
Marco Jiralerspong
Gauthier Gidel
24
43
0
30 Sep 2023
Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth Soft-Thresholding
Shaik Basheeruddin Shah
Pradyumna Pradhan
Wei Pu
Ramunaidu Randhi
Miguel R. D. Rodrigues
Yonina C. Eldar
22
4
0
12 Sep 2023
Catching Image Retrieval Generalization
Maksim Zhdanov
I. Karpukhin
VLM
19
0
0
23 Jun 2023
An information-Theoretic Approach to Semi-supervised Transfer Learning
Daniel Jakubovitz
David Uliel
Miguel R. D. Rodrigues
Raja Giryes
17
1
0
11 Jun 2023
Deep neural networks architectures from the perspective of manifold learning
German Magai
AAML
AI4CE
24
6
0
06 Jun 2023
Generalization and Estimation Error Bounds for Model-based Neural Networks
Avner Shultzman
Eyar Azar
M. Rodrigues
Yonina C. Eldar
16
7
0
19 Apr 2023
Lipschitzness Effect of a Loss Function on Generalization Performance of Deep Neural Networks Trained by Adam and AdamW Optimizers
M. Lashkari
Amin Gheibi
19
3
0
29 Mar 2023
Unsupervised Layer-wise Score Aggregation for Textual OOD Detection
Maxime Darrin
Guillaume Staerman
Eduardo Dadalto Camara Gomes
Jackie CK Cheung
Pablo Piantanida
Pierre Colombo
OODD
55
11
0
20 Feb 2023
Global Convergence Rate of Deep Equilibrium Models with General Activations
Lan V. Truong
39
2
0
11 Feb 2023
Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equation
Jose Antonio Lara Benitez
Takashi Furuya
F. Faucher
Anastasis Kratsios
X. Tricoche
Maarten V. de Hoop
37
16
0
27 Jan 2023
Stretched and measured neural predictions of complex network dynamics
V. Vasiliauskaite
Nino Antulov-Fantulin
25
1
0
12 Jan 2023
Policy Learning for Nonlinear Model Predictive Control with Application to USVs
Rizhong Wang
Huiping Li
Bin Liang
Yang Shi
Deming Xu
14
19
0
18 Nov 2022
Learning-based Design of Luenberger Observers for Autonomous Nonlinear Systems
Muhammad Umar B. Niazi
Johnson R. Cao
Xu-yang Sun
Amritam Das
Karl H. Johansson
OOD
13
22
0
04 Oct 2022
Relational Reasoning via Set Transformers: Provable Efficiency and Applications to MARL
Fengzhuo Zhang
Boyi Liu
Kaixin Wang
Vincent Y. F. Tan
Zhuoran Yang
Zhaoran Wang
OffRL
LRM
49
10
0
20 Sep 2022
Bounding the Rademacher Complexity of Fourier neural operators
Taeyoung Kim
Myung-joo Kang
AI4CE
17
9
0
12 Sep 2022
On Rademacher Complexity-based Generalization Bounds for Deep Learning
Lan V. Truong
MLT
37
13
0
08 Aug 2022
Deep Learning and Symbolic Regression for Discovering Parametric Equations
Michael Zhang
Samuel Kim
Peter Y. Lu
M. Soljavcić
24
18
0
01 Jul 2022
Topology and geometry of data manifold in deep learning
German Magai
A. Ayzenberg
AAML
19
11
0
19 Apr 2022
Pyramid-BERT: Reducing Complexity via Successive Core-set based Token Selection
Xin Huang
A. Khetan
Rene Bidart
Zohar Karnin
19
14
0
27 Mar 2022
Combining Varied Learners for Binary Classification using Stacked Generalization
Sruthi Nair
Abhishek Gupta
Raunak Joshi
V. Chitre
23
8
0
17 Feb 2022
The learning phases in NN: From Fitting the Majority to Fitting a Few
Johannes Schneider
9
0
0
16 Feb 2022
Generalization Error Bounds on Deep Learning with Markov Datasets
Lan V. Truong
21
8
0
23 Dec 2021
Error Bounds for a Matrix-Vector Product Approximation with Deep ReLU Neural Networks
T. Getu
27
2
0
25 Nov 2021
HierMUD: Hierarchical Multi-task Unsupervised Domain Adaptation between Bridges for Drive-by Damage Diagnosis
Jingxiao Liu
Susu Xu
Mario Bergés
Hae Young Noh
14
19
0
23 Jul 2021
Understanding Adversarial Examples Through Deep Neural Network's Response Surface and Uncertainty Regions
Juan Shu
B. Xi
Charles A. Kamhoua
AAML
11
0
0
30 Jun 2021
Generalization bounds for graph convolutional neural networks via Rademacher complexity
Shaogao Lv
GNN
13
15
0
20 Feb 2021
BRECQ: Pushing the Limit of Post-Training Quantization by Block Reconstruction
Yuhang Li
Ruihao Gong
Xu Tan
Yang Yang
Peng Hu
Qi Zhang
F. Yu
Wei Wang
Shi Gu
MQ
22
415
0
10 Feb 2021
Overestimation learning with guarantees
Adrien Gauffriau
Franccois Malgouyres
Mélanie Ducoffe
11
3
0
26 Jan 2021
Leveraging Local Variation in Data: Sampling and Weighting Schemes for Supervised Deep Learning
Paul Novello
Gaël Poëtte
D. Lugato
P. Congedo
11
0
0
19 Jan 2021
A function space analysis of finite neural networks with insights from sampling theory
Raja Giryes
14
6
0
15 Apr 2020
On the interplay between physical and content priors in deep learning for computational imaging
Mo Deng
Shuai Li
Iksung Kang
N. Fang
George Barbastathis
39
26
0
14 Apr 2020
Vulnerabilities of Connectionist AI Applications: Evaluation and Defence
Christian Berghoff
Matthias Neu
Arndt von Twickel
AAML
22
23
0
18 Mar 2020
Towards Probability-based Safety Verification of Systems with Components from Machine Learning
H. Kaindl
Stefan Kramer
17
1
0
02 Mar 2020
Introduction to deep learning
Lihi Shiloh-Perl
Raja Giryes
24
0
0
29 Feb 2020
Understanding Why Neural Networks Generalize Well Through GSNR of Parameters
Jinlong Liu
Guo-qing Jiang
Yunzhi Bai
Ting Chen
Huayan Wang
AI4CE
25
48
0
21 Jan 2020
Understanding Generalization in Deep Learning via Tensor Methods
Jingling Li
Yanchao Sun
Jiahao Su
Taiji Suzuki
Furong Huang
17
27
0
14 Jan 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
14
168
0
19 Dec 2019
Towards Quantifying Intrinsic Generalization of Deep ReLU Networks
Shaeke Salman
Canlin Zhang
Xiuwen Liu
W. Mio
OOD
11
0
0
18 Oct 2019
Orchestrating the Development Lifecycle of Machine Learning-Based IoT Applications: A Taxonomy and Survey
Bin Qian
Jie Su
Z. Wen
D. N. Jha
Yinhao Li
...
Albert Y. Zomaya
Omer F. Rana
Lizhe Wang
Maciej Koutny
R. Ranjan
20
4
0
11 Oct 2019
1
2
Next