Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.00033
Cited By
Techniques for Interpretable Machine Learning
31 July 2018
Mengnan Du
Ninghao Liu
Xia Hu
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Techniques for Interpretable Machine Learning"
47 / 97 papers shown
Title
Modeling Techniques for Machine Learning Fairness: A Survey
Mingyang Wan
Daochen Zha
Ninghao Liu
Na Zou
SyDa
FaML
30
36
0
04 Nov 2021
Tree-based local explanations of machine learning model predictions, AraucanaXAI
Enea Parimbelli
G. Nicora
Szymon Wilk
W. Michalowski
Riccardo Bellazzi
16
25
0
15 Oct 2021
LEMON: Explainable Entity Matching
Nils Barlaug
FAtt
AAML
20
9
0
01 Oct 2021
The Impact of Machine Learning on 2D/3D Registration for Image-guided Interventions: A Systematic Review and Perspective
Mathias Unberath
Cong Gao
Yicheng Hu
Max Judish
Russell H. Taylor
Mehran Armand
Robert Grupp
26
66
0
04 Aug 2021
A Survey on Graph-Based Deep Learning for Computational Histopathology
David Ahmedt-Aristizabal
M. Armin
Simon Denman
Clinton Fookes
L. Petersson
GNN
AI4CE
19
108
0
01 Jul 2021
Fairness via Representation Neutralization
Mengnan Du
Subhabrata Mukherjee
Guanchu Wang
Ruixiang Tang
Ahmed Hassan Awadallah
Xia Hu
25
78
0
23 Jun 2021
Multivariate Data Explanation by Jumping Emerging Patterns Visualization
Mário Popolin Neto
F. Paulovich
32
7
0
21 Jun 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
29
184
0
15 May 2021
Metamorphic Detection of Repackaged Malware
S. Singh
Gail E. Kaiser
21
8
0
27 Apr 2021
Towards Interpreting and Mitigating Shortcut Learning Behavior of NLU Models
Mengnan Du
Varun Manjunatha
R. Jain
Ruchi Deshpande
Franck Dernoncourt
Jiuxiang Gu
Tong Sun
Xia Hu
57
105
0
11 Mar 2021
Deep Learning for Android Malware Defenses: a Systematic Literature Review
Yue Liu
C. Tantithamthavorn
Li Li
Yepang Liu
AAML
30
77
0
09 Mar 2021
Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs
Harini Suresh
Kathleen M. Lewis
John Guttag
Arvind Satyanarayan
FAtt
40
25
0
17 Feb 2021
Towards Designing Computer Vision-based Explainable-AI Solution: A Use Case of Livestock Mart Industry
Devam Dave
Het Naik
Smiti Singhal
Rudresh Dwivedi
Pankesh Patel
15
1
0
08 Feb 2021
Beyond Expertise and Roles: A Framework to Characterize the Stakeholders of Interpretable Machine Learning and their Needs
Harini Suresh
Steven R. Gomez
K. Nam
Arvind Satyanarayan
34
126
0
24 Jan 2021
XAI-P-T: A Brief Review of Explainable Artificial Intelligence from Practice to Theory
Nazanin Fouladgar
Kary Främling
XAI
10
4
0
17 Dec 2020
Debiased-CAM to mitigate image perturbations with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
24
18
0
10 Dec 2020
Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting with their Explanations
Wolfgang Stammer
P. Schramowski
Kristian Kersting
FAtt
14
107
0
25 Nov 2020
Interpreting convolutional networks trained on textual data
Reza Marzban
Christopher Crick
FAtt
27
3
0
20 Oct 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
20
397
0
19 Oct 2020
Interpretable Machine Learning with an Ensemble of Gradient Boosting Machines
A. Konstantinov
Lev V. Utkin
FedML
AI4CE
8
138
0
14 Oct 2020
Cause vs. Effect in Context-Sensitive Prediction of Business Process Instances
Jens Brunk
M. Stierle
Leon Papke
K. Revoredo
Martin Matzner
J. Becker
14
22
0
15 Jul 2020
Usefulness of interpretability methods to explain deep learning based plant stress phenotyping
Koushik Nagasubramanian
Asheesh K. Singh
Arti Singh
S. Sarkar
Baskar Ganapathysubramanian
FAtt
19
16
0
11 Jul 2020
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
27
19
0
26 Jun 2020
An Embarrassingly Simple Approach for Trojan Attack in Deep Neural Networks
Ruixiang Tang
Mengnan Du
Ninghao Liu
Fan Yang
Xia Hu
AAML
18
184
0
15 Jun 2020
Adversarial Infidelity Learning for Model Interpretation
Jian Liang
Bing Bai
Yuren Cao
Kun Bai
Fei-Yue Wang
AAML
44
18
0
09 Jun 2020
Location, location, location: Satellite image-based real-estate appraisal
Jan-Peter Kucklick
Oliver Müller
20
5
0
04 Jun 2020
A Performance-Explainability Framework to Benchmark Machine Learning Methods: Application to Multivariate Time Series Classifiers
Kevin Fauvel
Véronique Masson
Elisa Fromont
AI4TS
44
17
0
29 May 2020
iCapsNets: Towards Interpretable Capsule Networks for Text Classification
Zhengyang Wang
Xia Hu
Shuiwang Ji
6
11
0
16 May 2020
Explainable Matrix -- Visualization for Global and Local Interpretability of Random Forest Classification Ensembles
Mário Popolin Neto
F. Paulovich
FAtt
33
88
0
08 May 2020
XEM: An Explainable-by-Design Ensemble Method for Multivariate Time Series Classification
Kevin Fauvel
Elisa Fromont
Véronique Masson
P. Faverdin
Alexandre Termier
AI4TS
33
41
0
07 May 2020
Don't Explain without Verifying Veracity: An Evaluation of Explainable AI with Video Activity Recognition
Mahsan Nourani
Chiradeep Roy
Tahrima Rahman
Eric D. Ragan
Nicholas Ruozzi
Vibhav Gogate
AAML
12
17
0
05 May 2020
Post-hoc explanation of black-box classifiers using confident itemsets
M. Moradi
Matthias Samwald
57
97
0
05 May 2020
GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions
Zebin Yang
Aijun Zhang
Agus Sudjianto
FAtt
19
126
0
16 Mar 2020
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
27
213
0
09 Mar 2020
Interpretability of machine learning based prediction models in healthcare
Gregor Stiglic
Primož Kocbek
Nino Fijačko
Marinka Zitnik
K. Verbert
Leona Cilar
AI4CE
35
372
0
20 Feb 2020
Human-Centered Artificial Intelligence: Reliable, Safe & Trustworthy
B. Shneiderman
16
673
0
10 Feb 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
LionForests: Local Interpretation of Random Forests
Ioannis Mollas
Nick Bassiliades
I. Vlahavas
Grigorios Tsoumakas
11
12
0
20 Nov 2019
A Decision-Theoretic Approach for Model Interpretability in Bayesian Framework
Homayun Afrabandpey
Tomi Peltola
Juho Piironen
Aki Vehtari
Samuel Kaski
17
3
0
21 Oct 2019
Techniques for Automated Machine Learning
Yi-Wei Chen
Qingquan Song
Xia Hu
8
48
0
21 Jul 2019
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Xia Hu
XAI
ELM
27
66
0
16 Jul 2019
Deep Learning for Spatio-Temporal Data Mining: A Survey
Senzhang Wang
Jiannong Cao
Philip S. Yu
AI4TS
26
549
0
11 Jun 2019
Is a Single Vector Enough? Exploring Node Polysemy for Network Embedding
Ninghao Liu
Qiaoyu Tan
Yuening Li
Hongxia Yang
Jingren Zhou
Xia Hu
22
87
0
25 May 2019
Fake News Early Detection: An Interdisciplinary Study
Xinyi Zhou
Atishay Jain
V. Phoha
R. Zafarani
14
206
0
26 Apr 2019
Deep Representation Learning for Social Network Analysis
Qiaoyu Tan
Ninghao Liu
Xia Hu
AI4TS
GNN
24
99
0
18 Apr 2019
A Gradient-Based Split Criterion for Highly Accurate and Transparent Model Trees
Klaus Broelemann
Gjergji Kasneci
16
20
0
25 Sep 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Previous
1
2