ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.11143
  4. Cited By
ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks

ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks

30 July 2018
Mingzhang Yin
Mingyuan Zhou
    MQ
ArXivPDFHTML

Papers citing "ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks"

3 / 3 papers shown
Title
Contextual Dropout: An Efficient Sample-Dependent Dropout Module
Contextual Dropout: An Efficient Sample-Dependent Dropout Module
Xinjie Fan
Shujian Zhang
Korawat Tanwisuth
Xiaoning Qian
Mingyuan Zhou
OOD
BDL
UQCV
30
27
0
06 Mar 2021
Straight-Through Estimator as Projected Wasserstein Gradient Flow
Straight-Through Estimator as Projected Wasserstein Gradient Flow
Pengyu Cheng
YooJung Choi
Yitao Liang
Dinghan Shen
Ricardo Henao
Mathias Niepert
24
14
0
05 Oct 2019
Progressive Stochastic Binarization of Deep Networks
Progressive Stochastic Binarization of Deep Networks
David Hartmann
Michael Wand
MQ
17
1
0
03 Apr 2019
1