Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.07838
Cited By
TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time
20 July 2018
Feargus Pendlebury
Fabio Pierazzi
Roberto Jordaney
Johannes Kinder
Lorenzo Cavallaro
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time"
43 / 43 papers shown
Title
On Benchmarking Code LLMs for Android Malware Analysis
Yiling He
Hongyu She
Xingzhi Qian
Xinran Zheng
Zhuo Chen
Zhanyue Qin
Lorenzo Cavallaro
ELM
50
1
0
01 Apr 2025
Benchmarking Android Malware Detection: Rethinking the Role of Traditional and Deep Learning Models
Guojun Liu
Doina Caragea
Xinming Ou
Sankardas Roy
AAML
69
0
0
24 Feb 2025
LAMD: Context-driven Android Malware Detection and Classification with LLMs
Xingzhi Qian
Xinran Zheng
Yiling He
Shuo Yang
Lorenzo Cavallaro
83
2
0
18 Feb 2025
Continual Learning with Strategic Selection and Forgetting for Network Intrusion Detection
Xinchen Zhang
Running Zhao
Zhihan Jiang
Handi Chen
Yulong Ding
Edith C.H. Ngai
Shuang-Hua Yang
AAML
89
0
0
17 Feb 2025
PromptSAM+: Malware Detection based on Prompt Segment Anything Model
Xingyuan Wei
Yichen Liu
Ce Li
Ning Li
Degang Sun
Yan Wang
VLM
AAML
37
0
0
04 Aug 2024
Mitigating the Impact of Malware Evolution on API Sequence-based Windows Malware Detector
Xingyuan Wei
Ce Li
Qiujian Lv
Ning Li
Degang Sun
Yan Wang
AAML
37
1
0
03 Aug 2024
SLIFER: Investigating Performance and Robustness of Malware Detection Pipelines
Andrea Ponte
Dmitrijs Trizna
Christian Scano
Battista Biggio
Ivan Tesfai Ogbu
Fabio Roli
49
0
0
23 May 2024
TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time (Extended Version)
Zeliang Kan
Shae McFadden
Daniel Arp
Feargus Pendlebury
Roberto Jordaney
Johannes Kinder
Fabio Pierazzi
Lorenzo Cavallaro
27
1
0
02 Feb 2024
Assessing the Impact of a Supervised Classification Filter on Flow-based Hybrid Network Anomaly Detection
Dominik Macko
Patrik Goldschmidt
Peter Pistek
Daniela Chudá
34
0
0
10 Oct 2023
Are Existing Out-Of-Distribution Techniques Suitable for Network Intrusion Detection?
Andrea Corsini
S. Yang
OODD
AAML
23
7
0
28 Aug 2023
Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature Extraction, and Model Performance
Savino Dambra
Yufei Han
Simone Aonzo
Platon Kotzias
Antonino Vitale
Juan Caballero
Davide Balzarotti
Leyla Bilge
19
23
0
27 Jul 2023
Detecting Misuse of Security APIs: A Systematic Review
Zahra Mousavi
Chadni Islam
Muhammad Ali Babar
A. Abuadbba
Kristen Moore
37
3
0
15 Jun 2023
SoK: Pragmatic Assessment of Machine Learning for Network Intrusion Detection
Giovanni Apruzzese
Pavel Laskov
J. Schneider
49
25
0
30 Apr 2023
A Survey on Malware Detection with Graph Representation Learning
Tristan Bilot
Nour El Madhoun
Khaldoun Al Agha
Anis Zouaoui
AAML
21
20
0
28 Mar 2023
AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical Applications with Categorical Inputs
Helene Orsini
Hongyan Bao
Yujun Zhou
Xiangrui Xu
Yufei Han
Longyang Yi
Wei Wang
Xin Gao
Xiangliang Zhang
AAML
44
1
0
13 Dec 2022
DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode
Tiezhu Sun
Kevin Allix
Kisub Kim
Xin Zhou
Dongsun Kim
David Lo
Tegawende F. Bissyande
Jacques Klein
29
12
0
12 Dec 2022
SUNDEW: An Ensemble of Predictors for Case-Sensitive Detection of Malware
Sareena Karapoola
Nikhilesh Singh
Chester Rebeiro
V. Kamakoti
15
0
0
11 Nov 2022
Firenze: Model Evaluation Using Weak Signals
Bhavna Soman
A. Torkamani
Michael J. Morais
Jeffrey Bickford
Baris Coskun
35
2
0
02 Jul 2022
Fusing Feature Engineering and Deep Learning: A Case Study for Malware Classification
Daniel Gibert
Carles Mateu
Jordi Planes
Quan Le
AAML
40
48
0
12 Jun 2022
Fast & Furious: Modelling Malware Detection as Evolving Data Streams
Fabrício Ceschin
Marcus Botacin
Heitor Murilo Gomes
Felipe Pinagé
Luiz S. Oliveira
André Grégio
AAML
9
17
0
24 May 2022
A False Sense of Security? Revisiting the State of Machine Learning-Based Industrial Intrusion Detection
Dominik Kus
Eric Wagner
Jan Pennekamp
Konrad Wolsing
I. Fink
Markus Dahlmanns
Klaus Wehrle
Martin Henze
26
24
0
18 May 2022
SoK: The Impact of Unlabelled Data in Cyberthreat Detection
Giovanni Apruzzese
Pavel Laskov
A.T. Tastemirova
38
29
0
18 May 2022
Do You Think You Can Hold Me? The Real Challenge of Problem-Space Evasion Attacks
Harel Berger
A. Dvir
Chen Hajaj
Rony Ronen
AAML
29
3
0
09 May 2022
Backdooring Explainable Machine Learning
Maximilian Noppel
Lukas Peter
Christian Wressnegger
AAML
18
5
0
20 Apr 2022
MaMaDroid2.0 -- The Holes of Control Flow Graphs
Harel Berger
Chen Hajaj
Enrico Mariconti
A. Dvir
36
4
0
28 Feb 2022
Jigsaw Puzzle: Selective Backdoor Attack to Subvert Malware Classifiers
Limin Yang
Zhi Chen
Jacopo Cortellazzi
Feargus Pendlebury
Kevin Tu
Fabio Pierazzi
Lorenzo Cavallaro
Gang Wang
AAML
26
36
0
11 Feb 2022
Android-COCO: Android Malware Detection with Graph Neural Network for Byte- and Native-Code
Peng Xu
14
5
0
19 Dec 2021
hybrid-Falcon: Hybrid Pattern Malware Detection and Categorization with Network Traffic and Program Code
Peng Xu
Claudia Eckert
Apostolis Zarras
36
4
0
19 Dec 2021
MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels
R. Joyce
Dev Amlani
B. Hamilton
Edward Raff
49
21
0
29 Nov 2021
RacketStore: Measurements of ASO Deception in Google Play via Mobile and App Usage
Nestor Hernandez
Ruben Recabarren
Bogdan Carbunar
Syed Ishtiaque Ahmed
21
2
0
19 Nov 2021
EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box Android Malware Detection
Hamid Bostani
Veelasha Moonsamy
AAML
38
51
0
07 Oct 2021
Can We Leverage Predictive Uncertainty to Detect Dataset Shift and Adversarial Examples in Android Malware Detection?
Deqiang Li
Tian Qiu
Shuo Chen
Qianmu Li
Shouhuai Xu
AAML
80
12
0
20 Sep 2021
HAWK: Rapid Android Malware Detection through Heterogeneous Graph Attention Networks
Yiming Hei
Renyu Yang
Hao Peng
Lihong Wang
Xiaolin Xu
Jianwei Liu
Hong Liu
Jie Xu
Lichao Sun
31
54
0
17 Aug 2021
Deep Learning for Android Malware Defenses: a Systematic Literature Review
Yue Liu
Chakkrit Tantithamthavorn
Li Li
Yepang Liu
AAML
35
77
0
09 Mar 2021
Adversarial Robustness with Non-uniform Perturbations
Ece Naz Erdemir
Jeffrey Bickford
Luca Melis
Sergul Aydore
AAML
24
26
0
24 Feb 2021
Technical Report -- Expected Exploitability: Predicting the Development of Functional Vulnerability Exploits
Octavian Suciu
Connor Nelson
Zhuo Lyu
Tiffany Bao
Tudor Dumitras
8
36
0
15 Feb 2021
PhishZip: A New Compression-based Algorithm for Detecting Phishing Websites
R. Purwanto
Arindam Pal
Alan Blair
S. Jha
24
2
0
22 Jul 2020
Towards Accurate Labeling of Android Apps for Reliable Malware Detection
Aleieldin Salem
6
6
0
01 Jul 2020
When the Guard failed the Droid: A case study of Android malware
Harel Berger
Chen Hajaj
A. Dvir
AAML
30
7
0
31 Mar 2020
On Model Evaluation under Non-constant Class Imbalance
J. Brabec
Tomás Komárek
Vojtech Franc
Lukás Machlica
16
36
0
15 Jan 2020
Detecting and Characterizing Lateral Phishing at Scale
Grant Ho
Asaf Cidon
Lior Gavish
M. Schweighauser
V. Paxson
Stefan Savage
G. Voelker
D. Wagner
11
96
0
02 Oct 2019
A Preliminary Study On the Sustainability of Android Malware Detection
Haipeng Cai
15
102
0
22 Jul 2018
Eight Years of Rider Measurement in the Android Malware Ecosystem: Evolution and Lessons Learned
Guillermo Suarez-Tangil
Gianluca Stringhini
19
62
0
24 Jan 2018
1