Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.06732
Cited By
Motivating the Rules of the Game for Adversarial Example Research
18 July 2018
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Motivating the Rules of the Game for Adversarial Example Research"
41 / 41 papers shown
Title
Human Aligned Compression for Robust Models
Samuel Räber
Andreas Plesner
Till Aczél
Roger Wattenhofer
AAML
35
0
0
16 Apr 2025
PubDef: Defending Against Transfer Attacks From Public Models
Chawin Sitawarin
Jaewon Chang
David Huang
Wesson Altoyan
David A. Wagner
AAML
31
5
0
26 Oct 2023
Impact of architecture on robustness and interpretability of multispectral deep neural networks
Charles Godfrey
Elise Bishoff
Myles Mckay
E. Byler
27
0
0
21 Sep 2023
"Real Attackers Don't Compute Gradients": Bridging the Gap Between Adversarial ML Research and Practice
Giovanni Apruzzese
Hyrum S. Anderson
Savino Dambra
D. Freeman
Fabio Pierazzi
Kevin A. Roundy
AAML
31
75
0
29 Dec 2022
Machine Learning Security in Industry: A Quantitative Survey
Kathrin Grosse
L. Bieringer
Tarek R. Besold
Battista Biggio
Katharina Krombholz
30
32
0
11 Jul 2022
Exact Feature Collisions in Neural Networks
Utku Ozbulak
Manvel Gasparyan
Shodhan Rao
W. D. Neve
Arnout Van Messem
AAML
19
1
0
31 May 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
32
13
0
26 Feb 2022
Natural Adversarial Objects
Felix Lau
Nishant Subramani
Sasha Harrison
Aerin Kim
E. Branson
Rosanne Liu
14
7
0
07 Nov 2021
Regional Adversarial Training for Better Robust Generalization
Chuanbiao Song
Yanbo Fan
Yichen Yang
Baoyuan Wu
Yiming Li
Zhifeng Li
Kun He
AAML
OOD
11
6
0
02 Sep 2021
Disentangling What and Where for 3D Object-Centric Representations Through Active Inference
Toon Van de Maele
Tim Verbelen
Ozan Çatal
Bart Dhoedt
OCL
23
5
0
26 Aug 2021
Data Poisoning Won't Save You From Facial Recognition
Evani Radiya-Dixit
Sanghyun Hong
Nicholas Carlini
Florian Tramèr
AAML
PICV
13
57
0
28 Jun 2021
Exposing Previously Undetectable Faults in Deep Neural Networks
Isaac Dunn
Hadrien Pouget
Daniel Kroening
T. Melham
AAML
23
28
0
01 Jun 2021
Removing Adversarial Noise in Class Activation Feature Space
Dawei Zhou
N. Wang
Chunlei Peng
Xinbo Gao
Xiaoyu Wang
Jun Yu
Tongliang Liu
AAML
25
28
0
19 Apr 2021
A Multiclass Boosting Framework for Achieving Fast and Provable Adversarial Robustness
Jacob D. Abernethy
Pranjal Awasthi
Satyen Kale
AAML
13
6
0
01 Mar 2021
Dompteur: Taming Audio Adversarial Examples
Thorsten Eisenhofer
Lea Schonherr
Joel Frank
Lars Speckemeier
D. Kolossa
Thorsten Holz
AAML
28
24
0
10 Feb 2021
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
25
73
0
07 Aug 2020
Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS -- a collection of Technical Notes Part 1
Robin Bloomfield
Gareth Fletcher
Heidy Khlaaf
Philippa Ryan
Shuji Kinoshita
...
M. Takeyama
Yamato Matsubara
Peter Popov
Peter Popov Kazuki Imai
Yoshinori Tsutake
24
3
0
28 Feb 2020
Adversarial Machine Learning -- Industry Perspectives
Ramnath Kumar
Magnus Nyström
J. Lambert
Andrew Marshall
Mario Goertzel
Andi Comissoneru
Matt Swann
Sharon Xia
AAML
SILM
27
232
0
04 Feb 2020
Adversarial Examples for Cost-Sensitive Classifiers
Mahdi Akbari Zarkesh
A. Lohn
Ali Movaghar
SILM
AAML
17
3
0
04 Oct 2019
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
50
1,417
0
16 Jul 2019
Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions
Yao Qin
Nicholas Frosst
S. Sabour
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
GAN
AAML
17
71
0
05 Jul 2019
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation
Raphael Gontijo-Lopes
Dong Yin
Ben Poole
Justin Gilmer
E. D. Cubuk
AAML
19
204
0
06 Jun 2019
Adversarial Policies: Attacking Deep Reinforcement Learning
Adam Gleave
Michael Dennis
Cody Wild
Neel Kant
Sergey Levine
Stuart J. Russell
AAML
25
348
0
25 May 2019
Adversarial Learning in Statistical Classification: A Comprehensive Review of Defenses Against Attacks
David J. Miller
Zhen Xiang
G. Kesidis
AAML
8
35
0
12 Apr 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
9
151
0
01 Apr 2019
Addressing Model Vulnerability to Distributional Shifts over Image Transformation Sets
Riccardo Volpi
Vittorio Murino
31
29
0
28 Mar 2019
Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness
J. Jacobsen
Jens Behrmann
Nicholas Carlini
Florian Tramèr
Nicolas Papernot
AAML
11
46
0
25 Mar 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
22
318
0
29 Jan 2019
Adversarial Attacks on Deep Learning Models in Natural Language Processing: A Survey
W. Zhang
Quan Z. Sheng
A. Alhazmi
Chenliang Li
AAML
21
57
0
21 Jan 2019
Rigorous Agent Evaluation: An Adversarial Approach to Uncover Catastrophic Failures
Junhui Yin
Jiayan Qiu
Csaba Szepesvári
Siqing Zhang
Avraham Ruderman
Jiyang Xie
Krishnamurthy Dvijotham
Zhanyu Ma
N. Heess
Pushmeet Kohli
AAML
13
80
0
04 Dec 2018
Scalable agent alignment via reward modeling: a research direction
Jan Leike
David M. Krueger
Tom Everitt
Miljan Martic
Vishal Maini
Shane Legg
28
392
0
19 Nov 2018
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
K. Makarychev
Pascal Dupré
Yury Makarychev
Giancarlo Pellegrino
Dan Boneh
AAML
23
64
0
08 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
20
166
0
01 Nov 2018
Unrestricted Adversarial Examples
Tom B. Brown
Nicholas Carlini
Chiyuan Zhang
Catherine Olsson
Paul Christiano
Ian Goodfellow
AAML
18
101
0
22 Sep 2018
Beyond Pixel Norm-Balls: Parametric Adversaries using an Analytically Differentiable Renderer
Hsueh-Ti Derek Liu
Michael Tao
Chun-Liang Li
Derek Nowrouzezahrai
Alec Jacobson
AAML
28
13
0
08 Aug 2018
Laplacian Networks: Bounding Indicator Function Smoothness for Neural Network Robustness
Carlos Lassance
Vincent Gripon
Antonio Ortega
AAML
16
16
0
24 May 2018
A General Framework for Adversarial Examples with Objectives
Mahmood Sharif
Sruti Bhagavatula
Lujo Bauer
Michael K. Reiter
AAML
GAN
13
191
0
31 Dec 2017
Hardening Quantum Machine Learning Against Adversaries
N. Wiebe
Ramnath Kumar
AAML
17
20
0
17 Nov 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
226
1,835
0
03 Feb 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
281
5,835
0
08 Jul 2016
1