ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.06343
  4. Cited By
Learning with SGD and Random Features

Learning with SGD and Random Features

17 July 2018
Luigi Carratino
Alessandro Rudi
Lorenzo Rosasco
ArXivPDFHTML

Papers citing "Learning with SGD and Random Features"

29 / 29 papers shown
Title
Optimal Kernel Quantile Learning with Random Features
Optimal Kernel Quantile Learning with Random Features
Caixing Wang
Xingdong Feng
64
1
0
24 Aug 2024
On Fast Leverage Score Sampling and Optimal Learning
On Fast Leverage Score Sampling and Optimal Learning
Alessandro Rudi
Daniele Calandriello
Luigi Carratino
Lorenzo Rosasco
34
81
0
31 Oct 2018
Localized Structured Prediction
Localized Structured Prediction
C. Ciliberto
Francis R. Bach
Alessandro Rudi
28
28
0
06 Jun 2018
Statistical Optimality of Stochastic Gradient Descent on Hard Learning
  Problems through Multiple Passes
Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes
Loucas Pillaud-Vivien
Alessandro Rudi
Francis R. Bach
68
100
0
25 May 2018
Optimal Rates for Spectral Algorithms with Least-Squares Regression over
  Hilbert Spaces
Optimal Rates for Spectral Algorithms with Least-Squares Regression over Hilbert Spaces
Junhong Lin
Alessandro Rudi
Lorenzo Rosasco
Volkan Cevher
64
99
0
20 Jan 2018
Exponential convergence of testing error for stochastic gradient methods
Exponential convergence of testing error for stochastic gradient methods
Loucas Pillaud-Vivien
Alessandro Rudi
Francis R. Bach
55
31
0
13 Dec 2017
Optimal Rates for Learning with Nyström Stochastic Gradient Methods
Optimal Rates for Learning with Nyström Stochastic Gradient Methods
Junhong Lin
Lorenzo Rosasco
66
7
0
21 Oct 2017
Generalization Properties of Doubly Stochastic Learning Algorithms
Generalization Properties of Doubly Stochastic Learning Algorithms
Junhong Lin
Lorenzo Rosasco
44
7
0
03 Jul 2017
FALKON: An Optimal Large Scale Kernel Method
FALKON: An Optimal Large Scale Kernel Method
Alessandro Rudi
Luigi Carratino
Lorenzo Rosasco
34
196
0
31 May 2017
Consistent Multitask Learning with Nonlinear Output Relations
Consistent Multitask Learning with Nonlinear Output Relations
C. Ciliberto
Alessandro Rudi
Lorenzo Rosasco
Massimiliano Pontil
41
33
0
23 May 2017
On Structured Prediction Theory with Calibrated Convex Surrogate Losses
On Structured Prediction Theory with Calibrated Convex Surrogate Losses
A. Osokin
Francis R. Bach
Simon Lacoste-Julien
44
61
0
07 Mar 2017
Orthogonal Random Features
Orthogonal Random Features
Felix X. Yu
A. Suresh
K. Choromanski
D. Holtmann-Rice
Sanjiv Kumar
63
221
0
28 Oct 2016
A Consistent Regularization Approach for Structured Prediction
A Consistent Regularization Approach for Structured Prediction
C. Ciliberto
Alessandro Rudi
Lorenzo Rosasco
66
79
0
24 May 2016
Harder, Better, Faster, Stronger Convergence Rates for Least-Squares
  Regression
Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression
Aymeric Dieuleveut
Nicolas Flammarion
Francis R. Bach
ODL
22
225
0
17 Feb 2016
Large Scale Kernel Learning using Block Coordinate Descent
Large Scale Kernel Learning using Block Coordinate Descent
Stephen Tu
Rebecca Roelofs
Shivaram Venkataraman
Benjamin Recht
30
42
0
17 Feb 2016
Generalization Properties of Learning with Random Features
Generalization Properties of Learning with Random Features
Alessandro Rudi
Lorenzo Rosasco
MLT
56
329
0
14 Feb 2016
NYTRO: When Subsampling Meets Early Stopping
NYTRO: When Subsampling Meets Early Stopping
Tomás Angles
Raffaello Camoriano
Alessandro Rudi
Lorenzo Rosasco
43
32
0
19 Oct 2015
Less is More: Nyström Computational Regularization
Less is More: Nyström Computational Regularization
Alessandro Rudi
Raffaello Camoriano
Lorenzo Rosasco
31
277
0
16 Jul 2015
Optimal Rates for Random Fourier Features
Optimal Rates for Random Fourier Features
Bharath K. Sriperumbudur
Z. Szabó
45
130
0
06 Jun 2015
Randomized sketches for kernels: Fast and optimal non-parametric
  regression
Randomized sketches for kernels: Fast and optimal non-parametric regression
Yun Yang
Mert Pilanci
Martin J. Wainwright
30
174
0
25 Jan 2015
On the Sample Complexity of Subspace Learning
On the Sample Complexity of Subspace Learning
Alessandro Rudi
Guillermo D. Cañas
Lorenzo Rosasco
31
29
0
21 Aug 2014
Fastfood: Approximate Kernel Expansions in Loglinear Time
Fastfood: Approximate Kernel Expansions in Loglinear Time
Quoc V. Le
Tamás Sarlós
Alex Smola
60
442
0
13 Aug 2014
Non-parametric Stochastic Approximation with Large Step sizes
Non-parametric Stochastic Approximation with Large Step sizes
Aymeric Dieuleveut
Francis R. Bach
37
169
0
02 Aug 2014
Scalable Kernel Methods via Doubly Stochastic Gradients
Scalable Kernel Methods via Doubly Stochastic Gradients
Bo Dai
Bo Xie
Niao He
Yingyu Liang
Anant Raj
Maria-Florina Balcan
Le Song
109
230
0
21 Jul 2014
Simultaneous Model Selection and Optimization through Parameter-free
  Stochastic Learning
Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning
Francesco Orabona
127
103
0
15 Jun 2014
Compact Random Feature Maps
Compact Random Feature Maps
Raffay Hamid
Ying Xiao
Alex Gittens
D. DeCoste
53
86
0
17 Dec 2013
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
132
573
0
08 Dec 2012
Fast approximation of matrix coherence and statistical leverage
Fast approximation of matrix coherence and statistical leverage
P. Drineas
M. Magdon-Ismail
Michael W. Mahoney
David P. Woodruff
124
531
0
18 Sep 2011
Optimal Distributed Online Prediction using Mini-Batches
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
241
683
0
07 Dec 2010
1