Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.06343
Cited By
Learning with SGD and Random Features
17 July 2018
Luigi Carratino
Alessandro Rudi
Lorenzo Rosasco
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning with SGD and Random Features"
29 / 29 papers shown
Title
Optimal Kernel Quantile Learning with Random Features
Caixing Wang
Xingdong Feng
64
1
0
24 Aug 2024
On Fast Leverage Score Sampling and Optimal Learning
Alessandro Rudi
Daniele Calandriello
Luigi Carratino
Lorenzo Rosasco
34
81
0
31 Oct 2018
Localized Structured Prediction
C. Ciliberto
Francis R. Bach
Alessandro Rudi
28
28
0
06 Jun 2018
Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes
Loucas Pillaud-Vivien
Alessandro Rudi
Francis R. Bach
68
100
0
25 May 2018
Optimal Rates for Spectral Algorithms with Least-Squares Regression over Hilbert Spaces
Junhong Lin
Alessandro Rudi
Lorenzo Rosasco
Volkan Cevher
64
99
0
20 Jan 2018
Exponential convergence of testing error for stochastic gradient methods
Loucas Pillaud-Vivien
Alessandro Rudi
Francis R. Bach
55
31
0
13 Dec 2017
Optimal Rates for Learning with Nyström Stochastic Gradient Methods
Junhong Lin
Lorenzo Rosasco
66
7
0
21 Oct 2017
Generalization Properties of Doubly Stochastic Learning Algorithms
Junhong Lin
Lorenzo Rosasco
44
7
0
03 Jul 2017
FALKON: An Optimal Large Scale Kernel Method
Alessandro Rudi
Luigi Carratino
Lorenzo Rosasco
34
196
0
31 May 2017
Consistent Multitask Learning with Nonlinear Output Relations
C. Ciliberto
Alessandro Rudi
Lorenzo Rosasco
Massimiliano Pontil
41
33
0
23 May 2017
On Structured Prediction Theory with Calibrated Convex Surrogate Losses
A. Osokin
Francis R. Bach
Simon Lacoste-Julien
44
61
0
07 Mar 2017
Orthogonal Random Features
Felix X. Yu
A. Suresh
K. Choromanski
D. Holtmann-Rice
Sanjiv Kumar
63
221
0
28 Oct 2016
A Consistent Regularization Approach for Structured Prediction
C. Ciliberto
Alessandro Rudi
Lorenzo Rosasco
66
79
0
24 May 2016
Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression
Aymeric Dieuleveut
Nicolas Flammarion
Francis R. Bach
ODL
22
225
0
17 Feb 2016
Large Scale Kernel Learning using Block Coordinate Descent
Stephen Tu
Rebecca Roelofs
Shivaram Venkataraman
Benjamin Recht
30
42
0
17 Feb 2016
Generalization Properties of Learning with Random Features
Alessandro Rudi
Lorenzo Rosasco
MLT
56
329
0
14 Feb 2016
NYTRO: When Subsampling Meets Early Stopping
Tomás Angles
Raffaello Camoriano
Alessandro Rudi
Lorenzo Rosasco
43
32
0
19 Oct 2015
Less is More: Nyström Computational Regularization
Alessandro Rudi
Raffaello Camoriano
Lorenzo Rosasco
31
277
0
16 Jul 2015
Optimal Rates for Random Fourier Features
Bharath K. Sriperumbudur
Z. Szabó
45
130
0
06 Jun 2015
Randomized sketches for kernels: Fast and optimal non-parametric regression
Yun Yang
Mert Pilanci
Martin J. Wainwright
30
174
0
25 Jan 2015
On the Sample Complexity of Subspace Learning
Alessandro Rudi
Guillermo D. Cañas
Lorenzo Rosasco
31
29
0
21 Aug 2014
Fastfood: Approximate Kernel Expansions in Loglinear Time
Quoc V. Le
Tamás Sarlós
Alex Smola
60
442
0
13 Aug 2014
Non-parametric Stochastic Approximation with Large Step sizes
Aymeric Dieuleveut
Francis R. Bach
37
169
0
02 Aug 2014
Scalable Kernel Methods via Doubly Stochastic Gradients
Bo Dai
Bo Xie
Niao He
Yingyu Liang
Anant Raj
Maria-Florina Balcan
Le Song
109
230
0
21 Jul 2014
Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning
Francesco Orabona
127
103
0
15 Jun 2014
Compact Random Feature Maps
Raffay Hamid
Ying Xiao
Alex Gittens
D. DeCoste
53
86
0
17 Dec 2013
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
132
573
0
08 Dec 2012
Fast approximation of matrix coherence and statistical leverage
P. Drineas
M. Magdon-Ismail
Michael W. Mahoney
David P. Woodruff
124
531
0
18 Sep 2011
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
241
683
0
07 Dec 2010
1