Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.03765
Cited By
Is Q-learning Provably Efficient?
10 July 2018
Chi Jin
Zeyuan Allen-Zhu
Sébastien Bubeck
Michael I. Jordan
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Is Q-learning Provably Efficient?"
25 / 225 papers shown
Title
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium
Qiaomin Xie
Yudong Chen
Zhaoran Wang
Zhuoran Yang
41
124
0
17 Feb 2020
Provable Self-Play Algorithms for Competitive Reinforcement Learning
Yu Bai
Chi Jin
SSL
22
148
0
10 Feb 2020
Adaptive Approximate Policy Iteration
Botao Hao
N. Lazić
Yasin Abbasi-Yadkori
Pooria Joulani
Csaba Szepesvári
18
14
0
08 Feb 2020
Reward-Free Exploration for Reinforcement Learning
Chi Jin
A. Krishnamurthy
Max Simchowitz
Tiancheng Yu
OffRL
116
194
0
07 Feb 2020
Asymptotically Efficient Off-Policy Evaluation for Tabular Reinforcement Learning
Ming Yin
Yu Wang
OffRL
29
80
0
29 Jan 2020
Online Reinforcement Learning of Optimal Threshold Policies for Markov Decision Processes
Arghyadip Roy
Vivek Borkar
A. Karandikar
P. Chaporkar
OffRL
30
20
0
21 Dec 2019
Optimism in Reinforcement Learning with Generalized Linear Function Approximation
Yining Wang
Ruosong Wang
S. Du
A. Krishnamurthy
137
135
0
09 Dec 2019
Scalable Reinforcement Learning for Multi-Agent Networked Systems
Guannan Qu
Adam Wierman
Na Li
28
33
0
05 Dec 2019
Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning
Dipendra Kumar Misra
Mikael Henaff
A. Krishnamurthy
John Langford
36
151
0
13 Nov 2019
Explicit Explore-Exploit Algorithms in Continuous State Spaces
Mikael Henaff
OffRL
22
31
0
01 Nov 2019
Better Exploration with Optimistic Actor-Critic
K. Ciosek
Q. Vuong
R. Loftin
Katja Hofmann
29
149
0
28 Oct 2019
On the Sample Complexity of Actor-Critic Method for Reinforcement Learning with Function Approximation
Harshat Kumar
Alec Koppel
Alejandro Ribeiro
104
80
0
18 Oct 2019
Model-free Reinforcement Learning in Infinite-horizon Average-reward Markov Decision Processes
Chen-Yu Wei
Mehdi Jafarnia-Jahromi
Haipeng Luo
Hiteshi Sharma
R. Jain
107
100
0
15 Oct 2019
Influence-Based Multi-Agent Exploration
Tonghan Wang
Jianhao Wang
Yi Wu
Chongjie Zhang
24
137
0
12 Oct 2019
Provably Efficient Reinforcement Learning with Linear Function Approximation
Chi Jin
Zhuoran Yang
Zhaoran Wang
Michael I. Jordan
52
543
0
11 Jul 2019
From self-tuning regulators to reinforcement learning and back again
Nikolai Matni
Alexandre Proutiere
Anders Rantzer
Stephen Tu
27
88
0
27 Jun 2019
Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies
Yonathan Efroni
Nadav Merlis
Mohammad Ghavamzadeh
Shie Mannor
OffRL
24
68
0
27 May 2019
Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound
Lin F. Yang
Mengdi Wang
OffRL
GP
26
283
0
24 May 2019
Stochastic approximation with cone-contractive operators: Sharp
ℓ
∞
\ell_\infty
ℓ
∞
-bounds for
Q
Q
Q
-learning
Martin J. Wainwright
19
104
0
15 May 2019
Q-learning with UCB Exploration is Sample Efficient for Infinite-Horizon MDP
Kefan Dong
Yuanhao Wang
Xiaoyu Chen
Liwei Wang
OffRL
19
95
0
27 Jan 2019
Exploration Bonus for Regret Minimization in Undiscounted Discrete and Continuous Markov Decision Processes
Jian Qian
Ronan Fruit
Matteo Pirotta
A. Lazaric
14
10
0
11 Dec 2018
The Gap Between Model-Based and Model-Free Methods on the Linear Quadratic Regulator: An Asymptotic Viewpoint
Stephen Tu
Benjamin Recht
OffRL
33
150
0
09 Dec 2018
Input Perturbations for Adaptive Control and Learning
Mohamad Kazem Shirani Faradonbeh
Ambuj Tewari
George Michailidis
21
46
0
10 Nov 2018
Policy Certificates: Towards Accountable Reinforcement Learning
Christoph Dann
Ashutosh Adhikari
Wei Wei
Jimmy J. Lin
OffRL
25
141
0
07 Nov 2018
Unsupervised Basis Function Adaptation for Reinforcement Learning
Edward W. Barker
C. Ras
OffRL
17
3
0
03 Mar 2017
Previous
1
2
3
4
5