ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.03632
  4. Cited By
The SAGE Project: a Storage Centric Approach for Exascale Computing

The SAGE Project: a Storage Centric Approach for Exascale Computing

6 July 2018
Sai B. Narasimhamurthy
N. Danilov
S. Wu
G. Umanesan
Steven W. D. Chien
Sergio Rivas-Gomez
Ivy Bo Peng
Erwin Laure
S. D. Witt
D. Pleiter
Stefano Markidis
ArXivPDFHTML

Papers citing "The SAGE Project: a Storage Centric Approach for Exascale Computing"

11 / 11 papers shown
Title
DAOS as HPC Storage: Exploring Interfaces
DAOS as HPC Storage: Exploring Interfaces
Adrian Jackson
Nicolau Manubens
13
2
0
30 Nov 2023
DisTRaC: Accelerating High Performance Compute Processing for Temporary
  Data Storage
DisTRaC: Accelerating High Performance Compute Processing for Temporary Data Storage
Gabryel Mason-Williams
David Bond
M. Basham
37
0
0
06 Dec 2022
Performance Comparison of DAOS and Lustre for Object Data Storage
  Approaches
Performance Comparison of DAOS and Lustre for Object Data Storage Approaches
Nicolau Manubens
Simon D. Smart
T. Quintino
Adrian Jackson
11
7
0
16 Nov 2022
DAOS as HPC Storage, a view from Numerical Weather Prediction
DAOS as HPC Storage, a view from Numerical Weather Prediction
Nicolau Manubens
T. Quintino
Simon D. Smart
E. Danovaro
Adrian Jackson
4
7
0
14 Aug 2022
sputniPIC: an Implicit Particle-in-Cell Code for Multi-GPU Systems
sputniPIC: an Implicit Particle-in-Cell Code for Multi-GPU Systems
Steven W. D. Chien
Jonas Nylund
Gabriel Bengtsson
Ivy Bo Peng
Artur Podobas
Stefano Markidis
16
12
0
10 Aug 2020
tf-Darshan: Understanding Fine-grained I/O Performance in Machine
  Learning Workloads
tf-Darshan: Understanding Fine-grained I/O Performance in Machine Learning Workloads
Steven W. D. Chien
Artur Podobas
Ivy Bo Peng
Stefano Markidis
18
11
0
10 Aug 2020
Multi-GPU Acceleration of the iPIC3D Implicit Particle-in-Cell Code
Multi-GPU Acceleration of the iPIC3D Implicit Particle-in-Cell Code
C. Sishtla
Steven W. D. Chien
V. Olshevsky
Erwin Laure
Stefano Markidis
12
4
0
07 Apr 2019
Characterizing Deep-Learning I/O Workloads in TensorFlow
Characterizing Deep-Learning I/O Workloads in TensorFlow
Steven W. D. Chien
Stefano Markidis
C. Sishtla
Luís Santos
Pawel Herman
Sai B. Narasimhamurthy
Erwin Laure
21
50
0
06 Oct 2018
Exploring Scientific Application Performance Using Large Scale Object
  Storage
Exploring Scientific Application Performance Using Large Scale Object Storage
Steven W. D. Chien
Stefano Markidis
Rami Karim
Erwin Laure
Sai B. Narasimhamurthy
25
4
0
06 Jul 2018
SAGE: Percipient Storage for Exascale Data Centric Computing
SAGE: Percipient Storage for Exascale Data Centric Computing
Sai B. Narasimhamurthy
N. Danilov
S. Wu
G. Umanesan
Stefano Markidis
Sergio Rivas-Gomez
Ivy Bo Peng
Erwin Laure
D. Pleiter
S. D. Witt
ELM
18
19
0
01 May 2018
Savu: A Python-based, MPI Framework for Simultaneous Processing of
  Multiple, N-dimensional, Large Tomography Datasets
Savu: A Python-based, MPI Framework for Simultaneous Processing of Multiple, N-dimensional, Large Tomography Datasets
Nicola Wadeson
M. Basham
33
62
0
24 Oct 2016
1