ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.03191
  4. Cited By
Approximate k-space models and Deep Learning for fast photoacoustic
  reconstruction

Approximate k-space models and Deep Learning for fast photoacoustic reconstruction

9 July 2018
A. Hauptmann
B. Cox
F. Lucka
N. Huynh
M. Betcke
P. Beard
Simon Arridge
ArXiv (abs)PDFHTML

Papers citing "Approximate k-space models and Deep Learning for fast photoacoustic reconstruction"

6 / 6 papers shown
Title
Domain independent post-processing with graph U-nets: Applications to
  Electrical Impedance Tomographic Imaging
Domain independent post-processing with graph U-nets: Applications to Electrical Impedance Tomographic Imaging
William Herzberg
A. Hauptmann
S. Hamilton
AI4CE
31
11
0
08 May 2023
Deep Learning in Photoacoustic Tomography: Current approaches and future
  directions
Deep Learning in Photoacoustic Tomography: Current approaches and future directions
A. Hauptmann
B. Cox
126
131
0
16 Sep 2020
Deep learning for photoacoustic imaging: a survey
Deep learning for photoacoustic imaging: a survey
Changchun Yang
Hengrong Lan
Feng Gao
Fei Gao
VLMMedIm
59
21
0
10 Aug 2020
Limited View and Sparse Photoacoustic Tomography for Neuroimaging with
  Deep Learning
Limited View and Sparse Photoacoustic Tomography for Neuroimaging with Deep Learning
Steven Guan
Amir A. Khan
S. Sikdar
P. Chitnis
52
93
0
11 Nov 2019
Y-Net: A Hybrid Deep Learning Reconstruction Framework for Photoacoustic
  Imaging in vivo
Y-Net: A Hybrid Deep Learning Reconstruction Framework for Photoacoustic Imaging in vivo
Hengrong Lan
Daohuai Jiang
Changchun Yang
Fei Gao
38
19
0
02 Aug 2019
Multi-Scale Learned Iterative Reconstruction
Multi-Scale Learned Iterative Reconstruction
A. Hauptmann
J. Adler
Simon Arridge
Ozan Oktem
108
37
0
01 Aug 2019
1