ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.02629
  4. Cited By
Optimistic mirror descent in saddle-point problems: Going the extra
  (gradient) mile

Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile

7 July 2018
P. Mertikopoulos
Bruno Lecouat
Houssam Zenati
Chuan-Sheng Foo
V. Chandrasekhar
Georgios Piliouras
ArXivPDFHTML

Papers citing "Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile"

10 / 60 papers shown
Title
The limits of min-max optimization algorithms: convergence to spurious
  non-critical sets
The limits of min-max optimization algorithms: convergence to spurious non-critical sets
Ya-Ping Hsieh
P. Mertikopoulos
V. Cevher
35
81
0
16 Jun 2020
Near-Optimal Algorithms for Minimax Optimization
Near-Optimal Algorithms for Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
34
251
0
05 Feb 2020
Towards Better Understanding of Adaptive Gradient Algorithms in
  Generative Adversarial Nets
Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets
Mingrui Liu
Youssef Mroueh
Jerret Ross
Wei Zhang
Xiaodong Cui
Payel Das
Tianbao Yang
ODL
38
63
0
26 Dec 2019
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and
  Algorithms
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms
Kaipeng Zhang
Zhuoran Yang
Tamer Basar
58
1,184
0
24 Nov 2019
Poincaré Recurrence, Cycles and Spurious Equilibria in
  Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games
Poincaré Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games
Lampros Flokas
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Georgios Piliouras
MLT
22
41
0
28 Oct 2019
Policy Optimization Provably Converges to Nash Equilibria in Zero-Sum
  Linear Quadratic Games
Policy Optimization Provably Converges to Nash Equilibria in Zero-Sum Linear Quadratic Games
Kaipeng Zhang
Zhuoran Yang
Tamer Basar
32
125
0
31 May 2019
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring
  for Minimax Problems
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring for Minimax Problems
Ernest K. Ryu
Kun Yuan
W. Yin
20
36
0
26 May 2019
Finding Mixed Nash Equilibria of Generative Adversarial Networks
Finding Mixed Nash Equilibria of Generative Adversarial Networks
Ya-Ping Hsieh
Chen Liu
S. Chakrabartty
GAN
27
91
0
23 Oct 2018
Bandit learning in concave $N$-person games
Bandit learning in concave NNN-person games
Mario Bravo
David S. Leslie
P. Mertikopoulos
8
121
0
03 Oct 2018
First-order Methods Almost Always Avoid Saddle Points
First-order Methods Almost Always Avoid Saddle Points
J. Lee
Ioannis Panageas
Georgios Piliouras
Max Simchowitz
Michael I. Jordan
Benjamin Recht
ODL
95
82
0
20 Oct 2017
Previous
12