ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.02562
  4. Cited By
Exploring Scientific Application Performance Using Large Scale Object
  Storage

Exploring Scientific Application Performance Using Large Scale Object Storage

6 July 2018
Steven W. D. Chien
Stefano Markidis
Rami Karim
Erwin Laure
Sai B. Narasimhamurthy
ArXivPDFHTML

Papers citing "Exploring Scientific Application Performance Using Large Scale Object Storage"

3 / 3 papers shown
Title
tf-Darshan: Understanding Fine-grained I/O Performance in Machine
  Learning Workloads
tf-Darshan: Understanding Fine-grained I/O Performance in Machine Learning Workloads
Steven W. D. Chien
Artur Podobas
Ivy Bo Peng
Stefano Markidis
24
11
0
10 Aug 2020
Characterizing Deep-Learning I/O Workloads in TensorFlow
Characterizing Deep-Learning I/O Workloads in TensorFlow
Steven W. D. Chien
Stefano Markidis
C. Sishtla
Luís Santos
Pawel Herman
Sai B. Narasimhamurthy
Erwin Laure
21
50
0
06 Oct 2018
SAGE: Percipient Storage for Exascale Data Centric Computing
SAGE: Percipient Storage for Exascale Data Centric Computing
Sai B. Narasimhamurthy
N. Danilov
S. Wu
G. Umanesan
Stefano Markidis
Sergio Rivas-Gomez
Ivy Bo Peng
Erwin Laure
D. Pleiter
S. D. Witt
ELM
21
19
0
01 May 2018
1