ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.02537
  4. Cited By
Fully Scalable Gaussian Processes using Subspace Inducing Inputs

Fully Scalable Gaussian Processes using Subspace Inducing Inputs

6 July 2018
A. Panos
P. Dellaportas
Michalis K. Titsias
ArXivPDFHTML

Papers citing "Fully Scalable Gaussian Processes using Subspace Inducing Inputs"

2 / 2 papers shown
Title
Numerically Stable Sparse Gaussian Processes via Minimum Separation
  using Cover Trees
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
58
7
0
14 Oct 2022
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
1