ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.01774
  4. Cited By
BOHB: Robust and Efficient Hyperparameter Optimization at Scale

BOHB: Robust and Efficient Hyperparameter Optimization at Scale

4 July 2018
Stefan Falkner
Aaron Klein
Frank Hutter
    BDL
ArXivPDFHTML

Papers citing "BOHB: Robust and Efficient Hyperparameter Optimization at Scale"

50 / 206 papers shown
Title
Automated Deep Learning: Neural Architecture Search Is Not the End
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
34
26
0
16 Dec 2021
BoGraph: Structured Bayesian Optimization From Logs for Expensive
  Systems with Many Parameters
BoGraph: Structured Bayesian Optimization From Logs for Expensive Systems with Many Parameters
Sami Alabed
Eiko Yoneki
17
7
0
16 Dec 2021
FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning
FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning
Yi Zhou
Parikshit Ram
Theodoros Salonidis
Nathalie Baracaldo
Horst Samulowitz
Heiko Ludwig
AI4CE
37
25
0
15 Dec 2021
Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning
Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning
Nicolai Dorka
Tim Welschehold
Joschka Boedecker
Wolfram Burgard
OffRL
30
9
0
24 Nov 2021
A survey on multi-objective hyperparameter optimization algorithms for
  Machine Learning
A survey on multi-objective hyperparameter optimization algorithms for Machine Learning
A. Hernández
I. Nieuwenhuyse
Sebastian Rojas Gonzalez
23
95
0
23 Nov 2021
Optimizing Bayesian acquisition functions in Gaussian Processes
Optimizing Bayesian acquisition functions in Gaussian Processes
Ashish Anil Pawar
Ujwal Warbhe
GP
16
4
0
09 Nov 2021
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark
  Suite for Lasso
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso
Kenan Sehic
Alexandre Gramfort
Joseph Salmon
Luigi Nardi
24
35
0
04 Nov 2021
Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for
  Semantic Segmentation
Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for Semantic Segmentation
Misgana Negassi
Diane Wagner
A. Reiterer
19
13
0
31 Oct 2021
Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in
  the Southeast Pacific
Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific
Andrew Jesson
P. Manshausen
A. Douglas
D. Watson‐Parris
Y. Gal
P. Stier
AI4Cl
27
6
0
28 Oct 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update
  Hyperparameters by Implicit Differentiation
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
36
9
0
20 Oct 2021
ProxyBO: Accelerating Neural Architecture Search via Bayesian
  Optimization with Zero-cost Proxies
ProxyBO: Accelerating Neural Architecture Search via Bayesian Optimization with Zero-cost Proxies
Yu Shen
Yang Li
Jian Zheng
Wentao Zhang
Peng Yao
Jixiang Li
Sen Yang
Ji Liu
Cui Bin
AI4CE
42
30
0
20 Oct 2021
NAS-HPO-Bench-II: A Benchmark Dataset on Joint Optimization of
  Convolutional Neural Network Architecture and Training Hyperparameters
NAS-HPO-Bench-II: A Benchmark Dataset on Joint Optimization of Convolutional Neural Network Architecture and Training Hyperparameters
Yoichi Hirose
Nozomu Yoshinari
Shinichi Shirakawa
25
13
0
19 Oct 2021
Improving Hyperparameter Optimization by Planning Ahead
Improving Hyperparameter Optimization by Planning Ahead
H. Jomaa
Jonas K. Falkner
Lars Schmidt-Thieme
22
0
0
15 Oct 2021
Tutorial on Deep Learning for Human Activity Recognition
Tutorial on Deep Learning for Human Activity Recognition
Marius Bock
Alexander Hoelzemann
Michael Moeller
Kristof Van Laerhoven
BDL
HAI
11
2
0
13 Oct 2021
Identification of Metallic Objects using Spectral Magnetic
  Polarizability Tensor Signatures: Object Classification
Identification of Metallic Objects using Spectral Magnetic Polarizability Tensor Signatures: Object Classification
Ben A. Wilson
P. Ledger
W. Lionheart
14
18
0
13 Oct 2021
NAS-Bench-360: Benchmarking Neural Architecture Search on Diverse Tasks
NAS-Bench-360: Benchmarking Neural Architecture Search on Diverse Tasks
Renbo Tu
Nicholas Roberts
M. Khodak
Jun Shen
Frederic Sala
Ameet Talwalkar
28
33
0
12 Oct 2021
Delve into the Performance Degradation of Differentiable Architecture
  Search
Delve into the Performance Degradation of Differentiable Architecture Search
Jiuling Zhang
Zhiming Ding
35
1
0
28 Sep 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems
  for HPO
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
51
100
0
14 Sep 2021
DHA: End-to-End Joint Optimization of Data Augmentation Policy,
  Hyper-parameter and Architecture
DHA: End-to-End Joint Optimization of Data Augmentation Policy, Hyper-parameter and Architecture
Kaichen Zhou
Lanqing Hong
Shuailiang Hu
Fengwei Zhou
Binxin Ru
Jiashi Feng
Zhenguo Li
62
10
0
13 Sep 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-Shan Shiu
36
51
0
20 Aug 2021
Is Differentiable Architecture Search truly a One-Shot Method?
Is Differentiable Architecture Search truly a One-Shot Method?
Jonas Geiping
Jovita Lukasik
M. Keuper
Michael Moeller
25
0
0
12 Aug 2021
Learning to Rank Ace Neural Architectures via Normalized Discounted
  Cumulative Gain
Learning to Rank Ace Neural Architectures via Normalized Discounted Cumulative Gain
Yuge Zhang
Quan Zhang
Li Zhang
Yaming Yang
Chenqian Yan
Xiaotian Gao
Yuqing Yang
38
0
0
06 Aug 2021
HyperJump: Accelerating HyperBand via Risk Modelling
HyperJump: Accelerating HyperBand via Risk Modelling
Pedro Mendes
Maria Casimiro
Paolo Romano
David Garlan
22
8
0
05 Aug 2021
Deep multi-task mining Calabi-Yau four-folds
Deep multi-task mining Calabi-Yau four-folds
Harold Erbin
Riccardo Finotello
Robin Schneider
M. Tamaazousti
35
17
0
04 Aug 2021
Homogeneous Architecture Augmentation for Neural Predictor
Homogeneous Architecture Augmentation for Neural Predictor
Yuqiao Liu
Yehui Tang
Yizhou Sun
34
22
0
28 Jul 2021
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space
  Decomposition
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space Decomposition
Yang Li
Yu Shen
Wentao Zhang
Jiawei Jiang
Bolin Ding
...
Jingren Zhou
Zhi-Xin Yang
Wentao Wu
Ce Zhang
Bin Cui
LRM
29
44
0
19 Jul 2021
Neural Architecture Search using Covariance Matrix Adaptation Evolution
  Strategy
Neural Architecture Search using Covariance Matrix Adaptation Evolution Strategy
Nilotpal Sinha
Kuan-Wen Chen
18
5
0
15 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
Rapid Neural Architecture Search by Learning to Generate Graphs from
  Datasets
Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets
Hayeon Lee
Eunyoung Hyung
Sung Ju Hwang
40
43
0
02 Jul 2021
AutoLoss: Automated Loss Function Search in Recommendations
AutoLoss: Automated Loss Function Search in Recommendations
Xiangyu Zhao
Haochen Liu
Wenqi Fan
Hui Liu
Jiliang Tang
Chong Wang
30
60
0
12 Jun 2021
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
E. Lee
David Eriksson
Valerio Perrone
Matthias Seeger
41
22
0
10 Jun 2021
A multi-objective perspective on jointly tuning hardware and
  hyperparameters
A multi-objective perspective on jointly tuning hardware and hyperparameters
David Salinas
Valerio Perrone
Olivier Cruchant
Cédric Archambeau
32
13
0
10 Jun 2021
AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on
  the Fly
AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly
Yuchen Jin
Dinesh Manocha
Liangyu Zhao
Yibo Zhu
Chuanxiong Guo
Marco Canini
Arvind Krishnamurthy
37
18
0
22 May 2021
Bag of Baselines for Multi-objective Joint Neural Architecture Search
  and Hyperparameter Optimization
Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization
Julia Guerrero-Viu
Sven Hauns
Sergio Izquierdo
Guilherme Miotto
Simon Schrodi
André Biedenkapp
T. Elsken
Difan Deng
Marius Lindauer
Frank Hutter
AI4CE
17
25
0
03 May 2021
How Powerful are Performance Predictors in Neural Architecture Search?
How Powerful are Performance Predictors in Neural Architecture Search?
Colin White
Arber Zela
Binxin Ru
Yang Liu
Frank Hutter
22
126
0
02 Apr 2021
On Evolving Attention Towards Domain Adaptation
On Evolving Attention Towards Domain Adaptation
Kekai Sheng
Ke Li
Xiawu Zheng
Jian Liang
Weiming Dong
Feiyue Huang
Rongrong Ji
Xing Sun
41
7
0
25 Mar 2021
There is More than Meets the Eye: Self-Supervised Multi-Object Detection
  and Tracking with Sound by Distilling Multimodal Knowledge
There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge
Francisco Rivera Valverde
Juana Valeria Hurtado
Abhinav Valada
28
72
0
01 Mar 2021
On the Importance of Hyperparameter Optimization for Model-based
  Reinforcement Learning
On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning
Bangnig Zhang
Raghunandan Rajan
Luis Pineda
Nathan Lambert
André Biedenkapp
Kurtland Chua
Frank Hutter
Roberto Calandra
29
100
0
26 Feb 2021
Automated Discovery of Adaptive Attacks on Adversarial Defenses
Automated Discovery of Adaptive Attacks on Adversarial Defenses
Chengyuan Yao
Pavol Bielik
Petar Tsankov
Martin Vechev
AAML
19
24
0
23 Feb 2021
CATE: Computation-aware Neural Architecture Encoding with Transformers
CATE: Computation-aware Neural Architecture Encoding with Transformers
Shen Yan
Kaiqiang Song
Z. Feng
Mi Zhang
22
24
0
14 Feb 2021
Adversarial Branch Architecture Search for Unsupervised Domain
  Adaptation
Adversarial Branch Architecture Search for Unsupervised Domain Adaptation
Luc Robbiano
Muhammad Rameez Ur Rahman
Fabio Galasso
Barbara Caputo
Fabio Maria Carlucci
16
16
0
12 Feb 2021
Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate
  models
Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate models
Jeroen van Hoof
Joaquin Vanschoren
BDL
38
9
0
06 Jan 2021
Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
  Networks
Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural Networks
Björn W. Schuller
H. Coppock
Alexander Gaskell
41
63
0
29 Dec 2020
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free
  Optimization
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
Valerio Perrone
Huibin Shen
Aida Zolic
I. Shcherbatyi
Amr Ahmed
...
Barbara Pogorzelska
Miroslav Miladinovic
K. Kenthapadi
Matthias Seeger
Cédric Archambeau
45
16
0
15 Dec 2020
Amazon SageMaker Autopilot: a white box AutoML solution at scale
Amazon SageMaker Autopilot: a white box AutoML solution at scale
Piali Das
Laurence Rouesnel
Nikita Ivkin
Tanya Bansal
Zohar Karnin
...
Giovanni Zappella
Cedric Archembeau
Matthias Seeger
Bhaskar Dutt
K. Venkateswar
25
69
0
15 Dec 2020
Efficient Automatic CASH via Rising Bandits
Efficient Automatic CASH via Rising Bandits
Yang Li
Jiawei Jiang
Jinyang Gao
Yingxia Shao
Ce Zhang
Bin Cui
30
34
0
08 Dec 2020
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
27
74
0
07 Dec 2020
TrimTuner: Efficient Optimization of Machine Learning Jobs in the Cloud
  via Sub-Sampling
TrimTuner: Efficient Optimization of Machine Learning Jobs in the Cloud via Sub-Sampling
Pedro Mendes
Maria Casimiro
Paolo Romano
David Garlan
22
18
0
09 Nov 2020
COOT: Cooperative Hierarchical Transformer for Video-Text Representation
  Learning
COOT: Cooperative Hierarchical Transformer for Video-Text Representation Learning
Simon Ging
Mohammadreza Zolfaghari
Hamed Pirsiavash
Thomas Brox
ViT
CLIP
31
169
0
01 Nov 2020
Resource-Aware Pareto-Optimal Automated Machine Learning Platform
Resource-Aware Pareto-Optimal Automated Machine Learning Platform
Yao Yang
Andrew Nam
M. Nasr-Azadani
Teresa Tung
16
6
0
30 Oct 2020
Previous
12345
Next