Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.01647
Cited By
v1
v2 (latest)
Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences
4 July 2018
Borja Balle
Gilles Barthe
Marco Gaboardi
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences"
25 / 25 papers shown
Title
Near Exact Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo
Arun Ganesh
Saminul Haque
Thomas Steinke
Abhradeep Thakurta
123
9
0
08 Oct 2024
Differentially Private Block-wise Gradient Shuffle for Deep Learning
Zilong Zhang
FedML
85
0
0
31 Jul 2024
Private Collaborative Edge Inference via Over-the-Air Computation
Selim F. Yilmaz
Burak Hasircioglu
Li Qiao
Deniz Gunduz
FedML
114
1
0
30 Jul 2024
Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
C. Lebeda
Matthew Regehr
Gautam Kamath
Thomas Steinke
114
10
0
27 May 2024
DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under Differentially Private Federated Learning using Dynamic Low-Rank Adaptation
Jie Xu
Karthikeyan P. Saravanan
Rogier van Dalen
Haaris Mehmood
David Tuckey
Mete Ozay
154
8
0
10 May 2024
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang
Ashwinee Panda
Milad Nasr
Saeed Mahloujifar
Prateek Mittal
180
25
0
09 Jan 2024
Personalized Privacy Amplification via Importance Sampling
Dominik Fay
Sebastian Mair
Jens Sjölund
115
0
0
05 Jul 2023
Privacy Amplification for Federated Learning via User Sampling and Wireless Aggregation
Mohamed Seif
Wei-Ting Chang
Ravi Tandon
FedML
89
46
0
02 Mar 2021
Subsampled Rényi Differential Privacy and Analytical Moments Accountant
Yu Wang
Borja Balle
S. Kasiviswanathan
85
401
0
31 Jul 2018
Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising
Borja Balle
Yu Wang
MLT
85
411
0
16 May 2018
Renyi Differential Privacy
Ilya Mironov
91
1,268
0
24 Feb 2017
Variational Bayes In Private Settings (VIPS)
Mijung Park
James R. Foulds
Kamalika Chaudhuri
Max Welling
66
42
0
01 Nov 2016
Differentially Private Variational Inference for Non-conjugate Models
Hibiki Ito
O. Dikmen
Antti Honkela
FedML
65
48
0
27 Oct 2016
Private Topic Modeling
Mijung Park
James R. Foulds
Kamalika Chaudhuri
Max Welling
43
12
0
14 Sep 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
216
6,162
0
01 Jul 2016
Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds
Mark Bun
Thomas Steinke
92
840
0
06 May 2016
Concentrated Differential Privacy
Cynthia Dwork
G. Rothblum
80
453
0
06 Mar 2016
Proving Differential Privacy via Probabilistic Couplings
Gilles Barthe
Marco Gaboardi
B. Grégoire
Justin Hsu
Pierre-Yves Strub
95
103
0
19 Jan 2016
Differentially Private Release and Learning of Threshold Functions
Mark Bun
Kobbi Nissim
Uri Stemmer
Salil P. Vadhan
83
198
0
28 Apr 2015
Privacy for Free: Posterior Sampling and Stochastic Gradient Monte Carlo
Yu Wang
S. Fienberg
Alex Smola
86
249
0
26 Feb 2015
Learning with Differential Privacy: Stability, Learnability and the Sufficiency and Necessity of ERM Principle
Yu Wang
Jing Lei
S. Fienberg
80
103
0
23 Feb 2015
Characterizing the Sample Complexity of Private Learners
A. Beimel
Kobbi Nissim
Uri Stemmer
81
80
0
10 Feb 2014
The Composition Theorem for Differential Privacy
Peter Kairouz
Sewoong Oh
Pramod Viswanath
145
685
0
04 Nov 2013
On Sampling, Anonymization, and Differential Privacy: Or, k-Anonymization Meets Differential Privacy
Ninghui Li
Wahbeh H. Qardaji
D. Su
126
282
0
13 Jan 2011
What Can We Learn Privately?
S. Kasiviswanathan
Homin K. Lee
Kobbi Nissim
Sofya Raskhodnikova
Adam D. Smith
137
1,474
0
06 Mar 2008
1