Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.00736
Cited By
An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors
2 July 2018
Joshua Allen
Bolin Ding
Janardhan Kulkarni
Harsha Nori
O. Ohrimenko
Sergey Yekhanin
SyDa
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors"
9 / 9 papers shown
Title
Adore: Differentially Oblivious Relational Database Operators
Lianke Qin
Rajesh Jayaram
E. Shi
Zhao Song
Danyang Zhuo
Shumo Chu
30
14
0
10 Dec 2022
Differentially Private Synthetic Data: Applied Evaluations and Enhancements
Lucas Rosenblatt
Xiao-Yang Liu
Samira Pouyanfar
Eduardo de Leon
Anuj M. Desai
Joshua Allen
SyDa
21
64
0
11 Nov 2020
Distributed Differentially Private Mutual Information Ranking and Its Applications
Ankit Srivastava
Samira Pouyanfar
Joshua Allen
Ken Johnston
Qida Ma
18
0
0
22 Sep 2020
Differentially private cross-silo federated learning
Mikko A. Heikkilä
A. Koskela
Kana Shimizu
Samuel Kaski
Antti Honkela
FedML
29
24
0
10 Jul 2020
Towards Probabilistic Verification of Machine Unlearning
David M. Sommer
Liwei Song
Sameer Wagh
Prateek Mittal
AAML
13
71
0
09 Mar 2020
SoK: Differential Privacies
Damien Desfontaines
Balázs Pejó
33
122
0
04 Jun 2019
Contamination Attacks and Mitigation in Multi-Party Machine Learning
Jamie Hayes
O. Ohrimenko
AAML
FedML
17
74
0
08 Jan 2019
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
150
420
0
29 Nov 2018
Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation
M. Goodrich
Michael Mitzenmacher
63
269
0
07 Jul 2010
1