ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.00431
  4. Cited By
Confounding variables can degrade generalization performance of
  radiological deep learning models

Confounding variables can degrade generalization performance of radiological deep learning models

2 July 2018
J. Zech
Marcus A. Badgeley
Manway Liu
A. Costa
J. Titano
Eric K. Oermann
    OOD
ArXivPDFHTML

Papers citing "Confounding variables can degrade generalization performance of radiological deep learning models"

50 / 139 papers shown
Title
Adversarial Scrutiny of Evidentiary Statistical Software
Adversarial Scrutiny of Evidentiary Statistical Software
Rediet Abebe
Moritz Hardt
Angela Jin
John Miller
Ludwig Schmidt
Rebecca Wexler
36
5
0
19 Jun 2022
The Importance of Background Information for Out of Distribution
  Generalization
The Importance of Background Information for Out of Distribution Generalization
Jupinder Parmar
Khaled Kamal Saab
Brian Pogatchnik
D. Rubin
Christopher Ré
OOD
21
0
0
17 Jun 2022
Rectify ViT Shortcut Learning by Visual Saliency
Rectify ViT Shortcut Learning by Visual Saliency
Chong Ma
Lin Zhao
Yuzhong Chen
David Liu
Xi Jiang
Tuo Zhang
Xintao Hu
Dinggang Shen
Dajiang Zhu
Tianming Liu
ViT
36
20
0
17 Jun 2022
Contrastive Learning for Unsupervised Domain Adaptation of Time Series
Contrastive Learning for Unsupervised Domain Adaptation of Time Series
Yilmazcan Ozyurt
Stefan Feuerriegel
Ce Zhang
AI4TS
34
45
0
13 Jun 2022
DORA: Exploring Outlier Representations in Deep Neural Networks
DORA: Exploring Outlier Representations in Deep Neural Networks
Kirill Bykov
Mayukh Deb
Dennis Grinwald
Klaus-Robert Muller
Marina M.-C. Höhne
27
12
0
09 Jun 2022
Comparing interpretation methods in mental state decoding analyses with
  deep learning models
Comparing interpretation methods in mental state decoding analyses with deep learning models
A. Thomas
Christopher Ré
R. Poldrack
AI4CE
39
2
0
31 May 2022
Eye-gaze-guided Vision Transformer for Rectifying Shortcut Learning
Eye-gaze-guided Vision Transformer for Rectifying Shortcut Learning
Chong Ma
Lin Zhao
Yuzhong Chen
Lu Zhang
Zhe Xiao
...
Tuo Zhang
Qian Wang
Dinggang Shen
Dajiang Zhu
Tianming Liu
ViT
MedIm
42
30
0
25 May 2022
Distributionally Robust Models with Parametric Likelihood Ratios
Distributionally Robust Models with Parametric Likelihood Ratios
Paul Michel
Tatsunori Hashimoto
Graham Neubig
OOD
30
15
0
13 Apr 2022
Rethinking Machine Learning Model Evaluation in Pathology
Rethinking Machine Learning Model Evaluation in Pathology
Syed Ashar Javed
Dinkar Juyal
Zahil Shanis
S. Chakraborty
Harsha Pokkalla
Aaditya (Adi) Prakash
LM&MA
33
12
0
11 Apr 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious
  Correlations
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
51
320
0
06 Apr 2022
Invariance Learning based on Label Hierarchy
Invariance Learning based on Label Hierarchy
S. Toyota
Kenji Fukumizu
OOD
23
1
0
29 Mar 2022
Trust in AI: Interpretability is not necessary or sufficient, while
  black-box interaction is necessary and sufficient
Trust in AI: Interpretability is not necessary or sufficient, while black-box interaction is necessary and sufficient
Max W. Shen
27
18
0
10 Feb 2022
The EMory BrEast imaging Dataset (EMBED): A Racially Diverse, Granular
  Dataset of 3.5M Screening and Diagnostic Mammograms
The EMory BrEast imaging Dataset (EMBED): A Racially Diverse, Granular Dataset of 3.5M Screening and Diagnostic Mammograms
J. Jeong
B. Vey
A. Bhimireddy
Thomas Kim
Thiago Santos
...
Christopher R. McAdams
Mary S. Newell
Imon Banerjee
J. Gichoya
Hari M. Trivedi
14
4
0
08 Feb 2022
Debiasing pipeline improves deep learning model generalization for X-ray
  based lung nodule detection
Debiasing pipeline improves deep learning model generalization for X-ray based lung nodule detection
M. J. Horry
Subrata Chakraborty
B. Pradhan
M. Paul
Jing Zhu
H. Loh
P. Barua
Usha R. Acharya
AI4CE
38
7
0
24 Jan 2022
Conditional Generation of Medical Time Series for Extrapolation to
  Underrepresented Populations
Conditional Generation of Medical Time Series for Extrapolation to Underrepresented Populations
Simon Bing
Andrea Dittadi
Stefan Bauer
Patrick Schwab
SyDa
25
17
0
20 Jan 2022
Causality-inspired Single-source Domain Generalization for Medical Image
  Segmentation
Causality-inspired Single-source Domain Generalization for Medical Image Segmentation
Cheng Ouyang
Chen Chen
Surui Li
Zeju Li
C. Qin
Wenjia Bai
Daniel Rueckert
OOD
34
156
0
24 Nov 2021
Explainable multiple abnormality classification of chest CT volumes
Explainable multiple abnormality classification of chest CT volumes
R. Draelos
Lawrence Carin
MedIm
34
12
0
24 Nov 2021
MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
  using Federated Evaluation
MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence using Federated Evaluation
Alexandros Karargyris
Renato Umeton
Micah J. Sheller
Alejandro Aristizabal
Johnu George
...
Poonam Yadav
Michael Rosenthal
M. Loda
Jason M. Johnson
Peter Mattson
FedML
49
73
0
29 Sep 2021
Deploying clinical machine learning? Consider the following...
Deploying clinical machine learning? Consider the following...
Charles Lu
Kenglun Chang
Praveer Singh
S. Pomerantz
S. Doyle
Sujay S Kakarmath
Christopher P. Bridge
Jayashree Kalpathy-Cramer
49
4
0
14 Sep 2021
On the Impact of Spurious Correlation for Out-of-distribution Detection
On the Impact of Spurious Correlation for Out-of-distribution Detection
Yifei Ming
Hang Yin
Yixuan Li
OODD
156
74
0
12 Sep 2021
Pulling Up by the Causal Bootstraps: Causal Data Augmentation for
  Pre-training Debiasing
Pulling Up by the Causal Bootstraps: Causal Data Augmentation for Pre-training Debiasing
Sindhu C. M. Gowda
Shalmali Joshi
Haoran Zhang
Marzyeh Ghassemi
CML
34
8
0
27 Aug 2021
InfoGram and Admissible Machine Learning
InfoGram and Admissible Machine Learning
S. Mukhopadhyay
FaML
22
8
0
17 Aug 2021
Source-Free Adaptation to Measurement Shift via Bottom-Up Feature
  Restoration
Source-Free Adaptation to Measurement Shift via Bottom-Up Feature Restoration
Cian Eastwood
I. Mason
Christopher K. I. Williams
Bernhard Schölkopf
TTA
27
51
0
12 Jul 2021
Out-of-distribution Generalization in the Presence of Nuisance-Induced
  Spurious Correlations
Out-of-distribution Generalization in the Presence of Nuisance-Induced Spurious Correlations
A. Puli
Lily H. Zhang
Eric K. Oermann
Rajesh Ranganath
OOD
OODD
27
48
0
29 Jun 2021
Disrupting Model Training with Adversarial Shortcuts
Disrupting Model Training with Adversarial Shortcuts
Ivan Evtimov
Ian Covert
Aditya Kusupati
Tadayoshi Kohno
AAML
28
10
0
12 Jun 2021
An Information-theoretic Approach to Distribution Shifts
An Information-theoretic Approach to Distribution Shifts
Marco Federici
Ryota Tomioka
Patrick Forré
OOD
44
17
0
07 Jun 2021
The Federated Tumor Segmentation (FeTS) Challenge
The Federated Tumor Segmentation (FeTS) Challenge
Sarthak Pati
Ujjwal Baid
M. Zenk
Brandon Edwards
Micah J. Sheller
...
Lena Maier-Hein
Jens Kleesiek
Bjoern H. Menze
Klaus Maier-Hein
Spyridon Bakas
FedML
OOD
49
74
0
12 May 2021
Structured dataset documentation: a datasheet for CheXpert
Structured dataset documentation: a datasheet for CheXpert
Christian Garbin
Pranav Rajpurkar
Jeremy Irvin
M. Lungren
Oge Marques
22
15
0
07 May 2021
Vision Transformer using Low-level Chest X-ray Feature Corpus for
  COVID-19 Diagnosis and Severity Quantification
Vision Transformer using Low-level Chest X-ray Feature Corpus for COVID-19 Diagnosis and Severity Quantification
Sangjoon Park
Gwanghyun Kim
Y. Oh
J. Seo
Sang Min Lee
Jin Hwan Kim
Sungjun Moon
Jae-Kwang Lim
Jong Chul Ye
ViT
MedIm
53
97
0
15 Apr 2021
IAIA-BL: A Case-based Interpretable Deep Learning Model for
  Classification of Mass Lesions in Digital Mammography
IAIA-BL: A Case-based Interpretable Deep Learning Model for Classification of Mass Lesions in Digital Mammography
A. Barnett
F. Schwartz
Chaofan Tao
Chaofan Chen
Yinhao Ren
J. Lo
Cynthia Rudin
31
133
0
23 Mar 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
An Empirical Framework for Domain Generalization in Clinical Settings
An Empirical Framework for Domain Generalization in Clinical Settings
Haoran Zhang
Natalie Dullerud
Laleh Seyyed-Kalantari
Q. Morris
Shalmali Joshi
Marzyeh Ghassemi
OOD
AI4CE
29
59
0
20 Mar 2021
Deep Learning for Chest X-ray Analysis: A Survey
Deep Learning for Chest X-ray Analysis: A Survey
Ecem Sogancioglu
E. Çallı
Bram van Ginneken
K. G. V. Leeuwen
K. Murphy
LM&MA
24
317
0
15 Mar 2021
Vision Transformer for COVID-19 CXR Diagnosis using Chest X-ray Feature
  Corpus
Vision Transformer for COVID-19 CXR Diagnosis using Chest X-ray Feature Corpus
Sangjoon Park
Gwanghyun Kim
Y. Oh
J. Seo
Sang Min Lee
Jin Hwan Kim
Sungjun Moon
Jae-Kwang Lim
J. C. Ye
ViT
MedIm
38
33
0
12 Mar 2021
Counterfactuals and Causability in Explainable Artificial Intelligence:
  Theory, Algorithms, and Applications
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
47
176
0
07 Mar 2021
Detecting Spurious Correlations with Sanity Tests for Artificial
  Intelligence Guided Radiology Systems
Detecting Spurious Correlations with Sanity Tests for Artificial Intelligence Guided Radiology Systems
U. Mahmood
Robik Shrestha
D. Bates
L. Mannelli
G. Corrias
Y. Erdi
Christopher Kanan
18
16
0
04 Mar 2021
Have We Learned to Explain?: How Interpretability Methods Can Learn to
  Encode Predictions in their Interpretations
Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations
N. Jethani
Mukund Sudarshan
Yindalon Aphinyanagphongs
Rajesh Ranganath
FAtt
82
69
0
02 Mar 2021
Do Input Gradients Highlight Discriminative Features?
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
28
57
0
25 Feb 2021
On Calibration and Out-of-domain Generalization
On Calibration and Out-of-domain Generalization
Yoav Wald
Amir Feder
D. Greenfeld
Uri Shalit
OODD
30
151
0
20 Feb 2021
Deep learning-based COVID-19 pneumonia classification using chest CT
  images: model generalizability
Deep learning-based COVID-19 pneumonia classification using chest CT images: model generalizability
D. Nguyen
F. Kay
Jun Tan
Yulong Yan
Y. Ng
P. Iyengar
R. Peshock
Steve B. Jiang
OOD
21
26
0
18 Feb 2021
Gifsplanation via Latent Shift: A Simple Autoencoder Approach to
  Counterfactual Generation for Chest X-rays
Gifsplanation via Latent Shift: A Simple Autoencoder Approach to Counterfactual Generation for Chest X-rays
Joseph Paul Cohen
Rupert Brooks
Sovann En
Evan Zucker
Anuj Pareek
M. Lungren
Akshay S. Chaudhari
FAtt
MedIm
37
4
0
18 Feb 2021
Searching for Pneumothorax in X-Ray Images Using Autoencoded Deep
  Features
Searching for Pneumothorax in X-Ray Images Using Autoencoded Deep Features
Antonio Sze-To
Abtin Riasatian
Hamid R. Tizhoosh
22
13
0
11 Feb 2021
Detecting and Adapting to Irregular Distribution Shifts in Bayesian
  Online Learning
Detecting and Adapting to Irregular Distribution Shifts in Bayesian Online Learning
Aodong Li
Alex Boyd
Padhraic Smyth
Stephan Mandt
15
21
0
15 Dec 2020
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
106
1,383
0
14 Dec 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
52
258
0
18 Nov 2020
Use HiResCAM instead of Grad-CAM for faithful explanations of
  convolutional neural networks
Use HiResCAM instead of Grad-CAM for faithful explanations of convolutional neural networks
R. Draelos
Lawrence Carin
FAtt
31
94
0
17 Nov 2020
Studying Robustness of Semantic Segmentation under Domain Shift in
  cardiac MRI
Studying Robustness of Semantic Segmentation under Domain Shift in cardiac MRI
Peter M. Full
Fabian Isensee
Paul F. Jäger
Klaus Maier-Hein
OOD
31
43
0
15 Nov 2020
Domain Generalization in Biosignal Classification
Domain Generalization in Biosignal Classification
T. Dissanayake
Tharindu Fernando
Simon Denman
H. Ghaemmaghami
Sridha Sridharan
Clinton Fookes
OOD
11
17
0
12 Nov 2020
Further Analysis of Outlier Detection with Deep Generative Models
Further Analysis of Outlier Detection with Deep Generative Models
Ziyu Wang
Bin Dai
David Wipf
Jun Zhu
17
39
0
25 Oct 2020
M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
  Screening from CT Imaging
M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia Screening from CT Imaging
Xuelin Qian
Huazhu Fu
Weiya Shi
Tao Chen
Yanwei Fu
F. Shan
Xiangyang Xue
33
51
0
07 Oct 2020
Previous
123
Next