ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.00251
  4. Cited By
Trust-Region Algorithms for Training Responses: Machine Learning Methods
  Using Indefinite Hessian Approximations
v1v2v3 (latest)

Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations

1 July 2018
Jennifer B. Erway
J. Griffin
Roummel F. Marcia
Riadh Omheni
ArXiv (abs)PDFHTML

Papers citing "Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations"

7 / 7 papers shown
Title
Two trust region type algorithms for solving nonconvex-strongly concave
  minimax problems
Two trust region type algorithms for solving nonconvex-strongly concave minimax problems
Tongliang Yao
Zi Xu
81
2
0
15 Feb 2024
Gradient Descent and the Power Method: Exploiting their connection to
  find the leftmost eigen-pair and escape saddle points
Gradient Descent and the Power Method: Exploiting their connection to find the leftmost eigen-pair and escape saddle points
R. Tappenden
Martin Takáč
49
0
0
02 Nov 2022
Using a New Nonlinear Gradient Method for Solving Large Scale Convex
  Optimization Problems with an Application on Arabic Medical Text
Using a New Nonlinear Gradient Method for Solving Large Scale Convex Optimization Problems with an Application on Arabic Medical Text
Jaafar Hammoud
A. Eisa
N. Dobrenko
N. Gusarova
15
1
0
08 Jun 2021
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
Majid Jahani
M. Nazari
R. Tappenden
A. Berahas
Martin Takávc
ODL
55
10
0
06 Jun 2020
Deep Neural Network Learning with Second-Order Optimizers -- a Practical
  Study with a Stochastic Quasi-Gauss-Newton Method
Deep Neural Network Learning with Second-Order Optimizers -- a Practical Study with a Stochastic Quasi-Gauss-Newton Method
C. Thiele
Mauricio Araya-Polo
D. Hohl
ODL
39
2
0
06 Apr 2020
Scaling Up Quasi-Newton Algorithms: Communication Efficient Distributed
  SR1
Scaling Up Quasi-Newton Algorithms: Communication Efficient Distributed SR1
Majid Jahani
M. Nazari
S. Rusakov
A. Berahas
Martin Takávc
87
14
0
30 May 2019
Deep Reinforcement Learning via L-BFGS Optimization
Deep Reinforcement Learning via L-BFGS Optimization
Chris Paxton
Roummel F. Marcia
OffRL
58
0
0
06 Nov 2018
1