Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.11187
Cited By
Neural-net-induced Gaussian process regression for function approximation and PDE solution
22 June 2018
G. Pang
Liu Yang
George Karniadakis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural-net-induced Gaussian process regression for function approximation and PDE solution"
15 / 15 papers shown
Title
A general physics-constrained method for the modelling of equation's closure terms with sparse data
Tian Chen
Shengping Liu
Li Liu
Heng Yong
PINN
AI4CE
56
0
0
30 Apr 2025
Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations
Haoyang Zheng
Guang Lin
AI4CE
58
0
0
01 Feb 2025
Reconstructing Blood Flow in Data-Poor Regimes: A Vasculature Network Kernel for Gaussian Process Regression
S. Z. Ashtiani
Mohammad Sarabian
K. Laksari
H. Babaee
34
2
0
14 Mar 2024
A physics-informed neural network framework for modeling obstacle-related equations
Hamid EL Bahja
J. C. Hauffen
P. Jung
B. Bah
Issa Karambal
PINN
AI4CE
44
4
0
07 Apr 2023
Neural Partial Differential Equations with Functional Convolution
Z. Wu
Xingzhe He
Yijun Li
Cheng Yang
Rui Liu
S. Xiong
Bo Zhu
25
1
0
10 Mar 2023
Random Grid Neural Processes for Parametric Partial Differential Equations
Arnaud Vadeboncoeur
Ieva Kazlauskaite
Y. Papandreou
F. Cirak
Mark Girolami
Ömer Deniz Akyildiz
AI4CE
40
11
0
26 Jan 2023
Learning Skills from Demonstrations: A Trend from Motion Primitives to Experience Abstraction
Mehrdad Tavassoli
S. Katyara
Maria Pozzi
Nikhil Deshpande
D. Caldwell
D. Prattichizzo
38
11
0
14 Oct 2022
MultiAuto-DeepONet: A Multi-resolution Autoencoder DeepONet for Nonlinear Dimension Reduction, Uncertainty Quantification and Operator Learning of Forward and Inverse Stochastic Problems
Jiahao Zhang
Shiqi Zhang
Guang Lin
25
14
0
07 Apr 2022
Monte Carlo PINNs: deep learning approach for forward and inverse problems involving high dimensional fractional partial differential equations
Ling Guo
Hao Wu
Xiao-Jun Yu
Tao Zhou
PINN
AI4CE
32
58
0
16 Mar 2022
On the Correspondence between Gaussian Processes and Geometric Harmonics
Felix Dietrich
J. M. Bello-Rivas
Ioannis G. Kevrekidis
34
3
0
05 Oct 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
61
655
0
20 Mar 2021
SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
Pengzhan Jin
Zhen Zhang
Aiqing Zhu
Yifa Tang
George Karniadakis
21
21
0
11 Jan 2020
Physics-Informed CoKriging: A Gaussian-Process-Regression-Based Multifidelity Method for Data-Model Convergence
Xiu Yang
D. Barajas-Solano
G. Tartakovsky
A. Tartakovsky
25
77
0
24 Nov 2018
Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations
Siyu Dai
Shawn Schaffert
Andreas G. Hofmann
26
355
0
05 Nov 2018
Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
Dongkun Zhang
Lu Lu
Ling Guo
George Karniadakis
UQCV
27
400
0
21 Sep 2018
1