Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.10758
Cited By
A Benchmark for Interpretability Methods in Deep Neural Networks
28 June 2018
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Benchmark for Interpretability Methods in Deep Neural Networks"
43 / 143 papers shown
Title
FairCanary: Rapid Continuous Explainable Fairness
Avijit Ghosh
Aalok Shanbhag
Christo Wilson
11
20
0
13 Jun 2021
On Sample Based Explanation Methods for NLP:Efficiency, Faithfulness, and Semantic Evaluation
Wei Zhang
Ziming Huang
Yada Zhu
Guangnan Ye
Xiaodong Cui
Fan Zhang
31
17
0
09 Jun 2021
The Out-of-Distribution Problem in Explainability and Search Methods for Feature Importance Explanations
Peter Hase
Harry Xie
Joey Tianyi Zhou
OODD
LRM
FAtt
29
91
0
01 Jun 2021
To trust or not to trust an explanation: using LEAF to evaluate local linear XAI methods
E. Amparore
Alan Perotti
P. Bajardi
FAtt
33
68
0
01 Jun 2021
Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks
Thorben Funke
Megha Khosla
Mandeep Rathee
Avishek Anand
FAtt
23
38
0
18 May 2021
Sanity Simulations for Saliency Methods
Joon Sik Kim
Gregory Plumb
Ameet Talwalkar
FAtt
41
17
0
13 May 2021
Do Feature Attribution Methods Correctly Attribute Features?
Yilun Zhou
Serena Booth
Marco Tulio Ribeiro
J. Shah
FAtt
XAI
33
132
0
27 Apr 2021
Improving Attribution Methods by Learning Submodular Functions
Piyushi Manupriya
Tarun Ram Menta
S. Jagarlapudi
V. Balasubramanian
TDI
30
6
0
19 Apr 2021
Explaining COVID-19 and Thoracic Pathology Model Predictions by Identifying Informative Input Features
Ashkan Khakzar
Yang Zhang
W. Mansour
Yuezhi Cai
Yawei Li
Yucheng Zhang
Seong Tae Kim
Nassir Navab
FAtt
52
17
0
01 Apr 2021
Deep learning on fundus images detects glaucoma beyond the optic disc
Ruben Hemelings
B. Elen
J. Barbosa-Breda
Matthew B. Blaschko
P. Boever
Ingeborg Stalmans
MedIm
28
59
0
22 Mar 2021
Interpretable Machine Learning: Moving From Mythos to Diagnostics
Valerie Chen
Jeffrey Li
Joon Sik Kim
Gregory Plumb
Ameet Talwalkar
32
29
0
10 Mar 2021
Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations
N. Jethani
Mukund Sudarshan
Yindalon Aphinyanagphongs
Rajesh Ranganath
FAtt
88
69
0
02 Mar 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
28
57
0
25 Feb 2021
MIMIC-IF: Interpretability and Fairness Evaluation of Deep Learning Models on MIMIC-IV Dataset
Chuizheng Meng
Loc Trinh
Nan Xu
Yan Liu
24
30
0
12 Feb 2021
Convolutional Neural Network Interpretability with General Pattern Theory
Erico Tjoa
Cuntai Guan
FAtt
AI4CE
18
6
0
05 Feb 2021
Explainability of deep vision-based autonomous driving systems: Review and challenges
Éloi Zablocki
H. Ben-younes
P. Pérez
Matthieu Cord
XAI
48
170
0
13 Jan 2021
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
35
63
0
18 Dec 2020
Transformer Interpretability Beyond Attention Visualization
Hila Chefer
Shir Gur
Lior Wolf
45
644
0
17 Dec 2020
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
50
243
0
21 Nov 2020
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
47
7
0
23 Oct 2020
Feature Importance Ranking for Deep Learning
Maksymilian Wojtas
Ke Chen
147
115
0
18 Oct 2020
Learning Propagation Rules for Attribution Map Generation
Yiding Yang
Jiayan Qiu
Xiuming Zhang
Dacheng Tao
Xinchao Wang
FAtt
38
17
0
14 Oct 2020
The elephant in the interpretability room: Why use attention as explanation when we have saliency methods?
Jasmijn Bastings
Katja Filippova
XAI
LRM
59
174
0
12 Oct 2020
Trustworthy Convolutional Neural Networks: A Gradient Penalized-based Approach
Nicholas F Halliwell
Freddy Lecue
FAtt
25
9
0
29 Sep 2020
What Do You See? Evaluation of Explainable Artificial Intelligence (XAI) Interpretability through Neural Backdoors
Yi-Shan Lin
Wen-Chuan Lee
Z. Berkay Celik
XAI
29
93
0
22 Sep 2020
Quantifying Explainability of Saliency Methods in Deep Neural Networks with a Synthetic Dataset
Erico Tjoa
Cuntai Guan
XAI
FAtt
19
27
0
07 Sep 2020
Debiasing Concept-based Explanations with Causal Analysis
M. T. Bahadori
David Heckerman
FAtt
CML
19
38
0
22 Jul 2020
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
Adversarial Infidelity Learning for Model Interpretation
Jian Liang
Bing Bai
Yuren Cao
Kun Bai
Fei Wang
AAML
57
18
0
09 Jun 2020
Explaining AI-based Decision Support Systems using Concept Localization Maps
Adriano Lucieri
Muhammad Naseer Bajwa
Andreas Dengel
Sheraz Ahmed
27
26
0
04 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
43
371
0
30 Apr 2020
Dendrite Net: A White-Box Module for Classification, Regression, and System Identification
Gang Liu
Junchang Wang
28
60
0
08 Apr 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
51
82
0
17 Mar 2020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
L. Arras
Ahmed Osman
Wojciech Samek
XAI
AAML
21
150
0
16 Mar 2020
Measuring and improving the quality of visual explanations
Agnieszka Grabska-Barwiñska
XAI
FAtt
24
3
0
14 Mar 2020
Selectivity considered harmful: evaluating the causal impact of class selectivity in DNNs
Matthew L. Leavitt
Ari S. Morcos
58
33
0
03 Mar 2020
Identifying Critical Neurons in ANN Architectures using Mixed Integer Programming
M. Elaraby
Guy Wolf
Margarida Carvalho
26
5
0
17 Feb 2020
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
Joseph D. Janizek
Pascal Sturmfels
Su-In Lee
FAtt
30
143
0
10 Feb 2020
Making deep neural networks right for the right scientific reasons by interacting with their explanations
P. Schramowski
Wolfgang Stammer
Stefano Teso
Anna Brugger
Xiaoting Shao
Hans-Georg Luigs
Anne-Katrin Mahlein
Kristian Kersting
37
207
0
15 Jan 2020
Exploratory Not Explanatory: Counterfactual Analysis of Saliency Maps for Deep Reinforcement Learning
Akanksha Atrey
Kaleigh Clary
David D. Jensen
FAtt
LRM
19
90
0
09 Dec 2019
Explainable AI for Trees: From Local Explanations to Global Understanding
Scott M. Lundberg
G. Erion
Hugh Chen
A. DeGrave
J. Prutkin
B. Nair
R. Katz
J. Himmelfarb
N. Bansal
Su-In Lee
FAtt
28
286
0
11 May 2019
On the (In)fidelity and Sensitivity for Explanations
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
39
449
0
27 Jan 2019
Revisiting the Importance of Individual Units in CNNs via Ablation
Bolei Zhou
Yiyou Sun
David Bau
Antonio Torralba
FAtt
59
115
0
07 Jun 2018
Previous
1
2
3