Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.10728
Cited By
Deep Echo State Networks with Uncertainty Quantification for Spatio-Temporal Forecasting
28 June 2018
Patrick L. McDermott
C. Wikle
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Echo State Networks with Uncertainty Quantification for Spatio-Temporal Forecasting"
21 / 21 papers shown
Title
A Physics-Informed Convolutional Long Short Term Memory Statistical Model for Fluid Thermodynamics Simulations
Luca Menicali
Andrew Grace
David H. Richter
Stefano Castruccio
AI4CE
24
0
0
16 May 2025
Hierarchical Count Echo State Network Models with Application to Graduate Student Enrollments
Qi Wang
Paul A. Parker
Robert B. Lund
61
0
0
24 Jan 2025
Evidential Deep Learning for Probabilistic Modelling of Extreme Storm Events
Ayush Khot
Xihaier Luo
Ai Kagawa
Shinjae Yoo
EDL
BDL
81
0
0
18 Dec 2024
CESAR: A Convolutional Echo State AutoencodeR for High-Resolution Wind Forecasting
Matthew Bonas
Paolo Giani
Paola Crippa
Stefano Castruccio
73
0
0
13 Dec 2024
Modeling High-Resolution Spatio-Temporal Wind with Deep Echo State Networks and Stochastic Partial Differential Equations
Kesen Wang
Minwoo Kim
S. Castruccio
M. Genton
70
0
0
10 Dec 2024
Echo State Networks for Spatio-Temporal Area-Level Data
Zhenhua Wang
S. Holan
C. Wikle
29
2
0
14 Oct 2024
Probabilistic load forecasting with Reservoir Computing
Michele Guerra
Simone Scardapane
F. Bianchi
BDL
21
3
0
24 Aug 2023
Variability of echo state network prediction horizon for partially observed dynamical systems
Ajit Mahata
Reetish Padhi
A. Apte
26
1
0
19 Jun 2023
REDS: Random Ensemble Deep Spatial prediction
Ranadeep Daw
C. Wikle
23
10
0
09 Nov 2022
Data-driven and machine-learning based prediction of wave propagation behavior in dam-break flood
Changli Li
Zheng Han
Yan-ge Li
Ming Li
Wei-dong Wang
16
2
0
19 Sep 2022
Survey on Deep Fuzzy Systems in regression applications: a view on interpretability
Jorge S. S. Júnior
Jérôme Mendes
F. Souza
C. Premebida
AI4CE
23
9
0
09 Sep 2022
Hyperparameter Tuning in Echo State Networks
Filip Matzner
30
2
0
16 Jul 2022
Statistical Deep Learning for Spatial and Spatio-Temporal Data
C. Wikle
A. Zammit‐Mangion
BDL
29
45
0
05 Jun 2022
PID-GAN: A GAN Framework based on a Physics-informed Discriminator for Uncertainty Quantification with Physics
Arka Daw
M. Maruf
Anuj Karpatne
AI4CE
10
42
0
06 Jun 2021
Randomization-based Machine Learning in Renewable Energy Prediction Problems: Critical Literature Review, New Results and Perspectives
Javier Del Ser
D. Casillas-Pérez
L. Cornejo-Bueno
Luis Prieto-Godino
J. Sanz-Justo
C. Casanova-Mateo
S. Salcedo-Sanz
AI4CE
42
42
0
26 Mar 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
56
1,883
0
12 Nov 2020
Deep Distributional Time Series Models and the Probabilistic Forecasting of Intraday Electricity Prices
Nadja Klein
M. Smith
David J. Nott
BDL
AI4TS
24
25
0
05 Oct 2020
A General Bayesian Model for Heteroskedastic Data with Fully Conjugate Full-Conditional Distributions
Paul A. Parker
S. Holan
S. Wills
11
12
0
28 Sep 2020
Uncertainty Quantification for Sparse Deep Learning
Yuexi Wang
Veronika Rockova
BDL
UQCV
36
31
0
26 Feb 2020
Deep Integro-Difference Equation Models for Spatio-Temporal Forecasting
A. Zammit‐Mangion
C. Wikle
15
47
0
29 Oct 2019
Data-driven prediction of a multi-scale Lorenz 96 chaotic system using deep learning methods: Reservoir computing, ANN, and RNN-LSTM
Ashesh Chattopadhyay
Pedram Hassanzadeh
D. Subramanian
AI4CE
19
40
0
20 Jun 2019
1