Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.10349
Cited By
Quantum-chemical insights from interpretable atomistic neural networks
27 June 2018
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Quantum-chemical insights from interpretable atomistic neural networks"
8 / 8 papers shown
Title
Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces
Pattarawat Chormai
J. Herrmann
Klaus-Robert Muller
G. Montavon
FAtt
48
17
0
30 Dec 2022
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
19
257
0
10 Jul 2020
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Thomas Schnake
Oliver Eberle
Jonas Lederer
Shinichi Nakajima
Kristof T. Schütt
Klaus-Robert Muller
G. Montavon
34
215
0
05 Jun 2020
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
Marcel F. Langer
Alex Goessmann
M. Rupp
AI4CE
23
92
0
26 Mar 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
44
82
0
17 Mar 2020
Unifying machine learning and quantum chemistry -- a deep neural network for molecular wavefunctions
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
R. Maurer
AI4CE
29
382
0
24 Jun 2019
Learning representations of molecules and materials with atomistic neural networks
Kristof T. Schütt
A. Tkatchenko
K. Müller
NAI
24
13
0
11 Dec 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1