ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.09809
  4. Cited By
Generating Counterfactual Explanations with Natural Language

Generating Counterfactual Explanations with Natural Language

26 June 2018
Lisa Anne Hendricks
Ronghang Hu
Trevor Darrell
Zeynep Akata
    FAtt
ArXivPDFHTML

Papers citing "Generating Counterfactual Explanations with Natural Language"

27 / 27 papers shown
Title
Classifier-to-Bias: Toward Unsupervised Automatic Bias Detection for Visual Classifiers
Classifier-to-Bias: Toward Unsupervised Automatic Bias Detection for Visual Classifiers
Quentin Guimard
Moreno DÍncà
Massimiliano Mancini
Elisa Ricci
SSL
72
0
0
29 Apr 2025
Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills
Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills
Zana Buçinca
S. Swaroop
Amanda E. Paluch
Finale Doshi-Velez
Krzysztof Z. Gajos
56
2
0
05 Oct 2024
PUPAE: Intuitive and Actionable Explanations for Time Series Anomalies
PUPAE: Intuitive and Actionable Explanations for Time Series Anomalies
Audrey Der
Chin-Chia Michael Yeh
Yan Zheng
Junpeng Wang
Zhongfang Zhuang
Liang Wang
Wei Zhang
Eamonn J. Keogh
AI4TS
45
2
0
16 Jan 2024
Interpretable Reinforcement Learning for Robotics and Continuous Control
Interpretable Reinforcement Learning for Robotics and Continuous Control
Rohan R. Paleja
Letian Chen
Yaru Niu
Andrew Silva
Zhaoxin Li
...
K. Chang
H. E. Tseng
Yan Wang
S. Nageshrao
Matthew C. Gombolay
37
7
0
16 Nov 2023
Counterfactual Explanations for Misclassified Images: How Human and
  Machine Explanations Differ
Counterfactual Explanations for Misclassified Images: How Human and Machine Explanations Differ
Eoin Delaney
A. Pakrashi
Derek Greene
Markt. Keane
35
16
0
16 Dec 2022
Explainability Via Causal Self-Talk
Explainability Via Causal Self-Talk
Nicholas A. Roy
Junkyung Kim
Neil C. Rabinowitz
CML
26
7
0
17 Nov 2022
Towards Human-Centred Explainability Benchmarks For Text Classification
Towards Human-Centred Explainability Benchmarks For Text Classification
Viktor Schlegel
Erick Mendez Guzman
R. Batista-Navarro
28
5
0
10 Nov 2022
Fooling Explanations in Text Classifiers
Fooling Explanations in Text Classifiers
Adam Ivankay
Ivan Girardi
Chiara Marchiori
P. Frossard
AAML
35
20
0
07 Jun 2022
MACE: An Efficient Model-Agnostic Framework for Counterfactual
  Explanation
MACE: An Efficient Model-Agnostic Framework for Counterfactual Explanation
Wenzhuo Yang
Jia Li
Caiming Xiong
Guosheng Lin
CML
35
13
0
31 May 2022
CLEVR-X: A Visual Reasoning Dataset for Natural Language Explanations
CLEVR-X: A Visual Reasoning Dataset for Natural Language Explanations
Leonard Salewski
A. Sophia Koepke
Hendrik P. A. Lensch
Zeynep Akata
LRM
NAI
33
20
0
05 Apr 2022
Learning Interpretable, High-Performing Policies for Autonomous Driving
Learning Interpretable, High-Performing Policies for Autonomous Driving
Rohan R. Paleja
Yaru Niu
Andrew Silva
Chace Ritchie
Sugju Choi
Matthew C. Gombolay
27
16
0
04 Feb 2022
Towards Relatable Explainable AI with the Perceptual Process
Towards Relatable Explainable AI with the Perceptual Process
Wencan Zhang
Brian Y. Lim
AAML
XAI
25
62
0
28 Dec 2021
Exploring The Role of Local and Global Explanations in Recommender
  Systems
Exploring The Role of Local and Global Explanations in Recommender Systems
Marissa Radensky
Doug Downey
Kyle Lo
Z. Popović
Daniel S. Weld University of Washington
LRM
13
20
0
27 Sep 2021
Counterfactual Explainable Recommendation
Counterfactual Explainable Recommendation
Juntao Tan
Shuyuan Xu
Yingqiang Ge
Yunqi Li
Xu Chen
Yongfeng Zhang
CML
30
141
0
24 Aug 2021
A Review on Explainability in Multimodal Deep Neural Nets
A Review on Explainability in Multimodal Deep Neural Nets
Gargi Joshi
Rahee Walambe
K. Kotecha
29
140
0
17 May 2021
Local Interpretations for Explainable Natural Language Processing: A
  Survey
Local Interpretations for Explainable Natural Language Processing: A Survey
Siwen Luo
Hamish Ivison
S. Han
Josiah Poon
MILM
43
48
0
20 Mar 2021
Contrastive Explanations for Model Interpretability
Contrastive Explanations for Model Interpretability
Alon Jacovi
Swabha Swayamdipta
Shauli Ravfogel
Yanai Elazar
Yejin Choi
Yoav Goldberg
44
95
0
02 Mar 2021
Mitigating belief projection in explainable artificial intelligence via
  Bayesian Teaching
Mitigating belief projection in explainable artificial intelligence via Bayesian Teaching
Scott Cheng-Hsin Yang
Wai Keen Vong
Ravi B. Sojitra
Tomas Folke
Patrick Shafto
21
42
0
07 Feb 2021
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
26
162
0
20 Oct 2020
Counterfactual explanation of machine learning survival models
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
27
19
0
26 Jun 2020
NILE : Natural Language Inference with Faithful Natural Language
  Explanations
NILE : Natural Language Inference with Faithful Natural Language Explanations
Sawan Kumar
Partha P. Talukdar
XAI
LRM
16
160
0
25 May 2020
SCOUT: Self-aware Discriminant Counterfactual Explanations
SCOUT: Self-aware Discriminant Counterfactual Explanations
Pei Wang
Nuno Vasconcelos
FAtt
30
81
0
16 Apr 2020
Causal Interpretability for Machine Learning -- Problems, Methods and
  Evaluation
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
27
213
0
09 Mar 2020
CheXplain: Enabling Physicians to Explore and UnderstandData-Driven,
  AI-Enabled Medical Imaging Analysis
CheXplain: Enabling Physicians to Explore and UnderstandData-Driven, AI-Enabled Medical Imaging Analysis
Yao Xie
Melody Chen
David Kao
Ge Gao
Xiang Ánthony' Chen
31
126
0
15 Jan 2020
Generating Counterfactual and Contrastive Explanations using SHAP
Generating Counterfactual and Contrastive Explanations using SHAP
Shubham Rathi
24
56
0
21 Jun 2019
Interpretable and Personalized Apprenticeship Scheduling: Learning
  Interpretable Scheduling Policies from Heterogeneous User Demonstrations
Interpretable and Personalized Apprenticeship Scheduling: Learning Interpretable Scheduling Policies from Heterogeneous User Demonstrations
Rohan R. Paleja
Andrew Silva
Letian Chen
Matthew C. Gombolay
22
31
0
14 Jun 2019
Learning Deep Representations of Fine-grained Visual Descriptions
Learning Deep Representations of Fine-grained Visual Descriptions
Scott E. Reed
Zeynep Akata
Bernt Schiele
Honglak Lee
OCL
VLM
176
840
0
17 May 2016
1