Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.08295
Cited By
How Many Random Seeds? Statistical Power Analysis in Deep Reinforcement Learning Experiments
21 June 2018
Cédric Colas
Olivier Sigaud
Pierre-Yves Oudeyer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Many Random Seeds? Statistical Power Analysis in Deep Reinforcement Learning Experiments"
21 / 21 papers shown
Title
Evidence on the Regularisation Properties of Maximum-Entropy Reinforcement Learning
Rémy Hosseinkhan Boucher
Onofrio Semeraro
L. Mathelin
87
0
0
28 Jan 2025
Reproducibility in Machine Learning-based Research: Overview, Barriers and Drivers
Harald Semmelrock
Tony Ross-Hellauer
Simone Kopeinik
Dieter Theiler
Armin Haberl
Stefan Thalmann
Dominik Kowald
65
7
0
20 Jun 2024
AndroidWorld: A Dynamic Benchmarking Environment for Autonomous Agents
Christopher Rawles
Sarah Clinckemaillie
Yifan Chang
Jonathan Waltz
Gabrielle Lau
...
Daniel Toyama
Robert Berry
Divya Tyamagundlu
Timothy Lillicrap
Oriana Riva
LLMAG
72
44
0
23 May 2024
Deep Q-Network Based Decision Making for Autonomous Driving
M. Ronecker
Yuan-xian Zhu
27
32
0
21 Mar 2023
A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems
Megan M. Baker
Alexander New
Mario Aguilar-Simon
Ziad Al-Halah
Sébastien M. R. Arnold
...
Zifan Xu
A. Yanguas-Gil
Harel Yedidsion
Shangqun Yu
Gautam K. Vallabha
35
16
0
18 Jan 2023
Towards a Standardised Performance Evaluation Protocol for Cooperative MARL
R. Gorsane
Omayma Mahjoub
Ruan de Kock
Roland Dubb
Siddarth S. Singh
Arnu Pretorius
OffRL
44
50
0
21 Sep 2022
How stable are Transferability Metrics evaluations?
A. Agostinelli
Michal Pándy
J. Uijlings
Thomas Mensink
V. Ferrari
37
23
0
04 Apr 2022
Towards Training Reproducible Deep Learning Models
Boyuan Chen
Mingzhi Wen
Yong Shi
Dayi Lin
Gopi Krishnan Rajbahadur
Zhen Ming
Z. Jiang
SyDa
23
37
0
04 Feb 2022
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Jack Parker-Holder
Raghunandan Rajan
Xingyou Song
André Biedenkapp
Yingjie Miao
...
Vu-Linh Nguyen
Roberto Calandra
Aleksandra Faust
Frank Hutter
Marius Lindauer
AI4CE
38
100
0
11 Jan 2022
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
OffRL
61
643
0
30 Aug 2021
TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL
Clément Romac
Rémy Portelas
Katja Hofmann
Pierre-Yves Oudeyer
29
21
0
17 Mar 2021
Revisiting Rainbow: Promoting more Insightful and Inclusive Deep Reinforcement Learning Research
J. Obando-Ceron
Pablo Samuel Castro
OffRL
20
105
0
20 Nov 2020
Dirichlet policies for reinforced factor portfolios
Eric André
Guillaume Coqueret
25
7
0
10 Nov 2020
Control with adaptive Q-learning
J. Araújo
Mário A. T. Figueiredo
M. Botto
33
2
0
03 Nov 2020
Intrinsic Robotic Introspection: Learning Internal States From Neuron Activations
N. Pitsillos
Ameya Pore
B. S. Jensen
G. Aragon-Camarasa
15
3
0
03 Nov 2020
How to Make Deep RL Work in Practice
Nirnai Rao
Elie Aljalbout
Axel Sauer
Sami Haddadin
OffRL
29
11
0
25 Oct 2020
Quantity vs. Quality: On Hyperparameter Optimization for Deep Reinforcement Learning
L. Hertel
Pierre Baldi
D. Gillen
BDL
31
12
0
29 Jul 2020
On the Sensory Commutativity of Action Sequences for Embodied Agents
Hugo Caselles-Dupré
Michael Garcia Ortiz
David Filliat
21
4
0
13 Feb 2020
On the Role of Weight Sharing During Deep Option Learning
Matthew D Riemer
Ignacio Cases
Clemens Rosenbaum
Miao Liu
Gerald Tesauro
OffRL
14
18
0
31 Dec 2019
Investigating Generalisation in Continuous Deep Reinforcement Learning
Chenyang Zhao
Olivier Sigaud
F. Stulp
Timothy M. Hospedales
OffRL
22
48
0
19 Feb 2019
Deterministic Implementations for Reproducibility in Deep Reinforcement Learning
P. Nagarajan
Garrett A. Warnell
Peter Stone
22
51
0
15 Sep 2018
1