ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.07872
  4. Cited By
Hybrid Bayesian Eigenobjects: Combining Linear Subspace and Deep Network
  Methods for 3D Robot Vision

Hybrid Bayesian Eigenobjects: Combining Linear Subspace and Deep Network Methods for 3D Robot Vision

20 June 2018
Benjamin Burchfiel
George Konidaris
ArXivPDFHTML

Papers citing "Hybrid Bayesian Eigenobjects: Combining Linear Subspace and Deep Network Methods for 3D Robot Vision"

2 / 2 papers shown
Title
A Review of Robot Learning for Manipulation: Challenges,
  Representations, and Algorithms
A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms
Oliver Kroemer
S. Niekum
George Konidaris
41
356
0
06 Jul 2019
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
201
1,942
0
24 Oct 2016
1