ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.07840
  4. Cited By
Edge Intelligence: On-Demand Deep Learning Model Co-Inference with
  Device-Edge Synergy

Edge Intelligence: On-Demand Deep Learning Model Co-Inference with Device-Edge Synergy

20 June 2018
En Li
Zhi Zhou
Xu Chen
ArXivPDFHTML

Papers citing "Edge Intelligence: On-Demand Deep Learning Model Co-Inference with Device-Edge Synergy"

20 / 70 papers shown
Title
Inference Time Optimization Using BranchyNet Partitioning
Inference Time Optimization Using BranchyNet Partitioning
R. G. Pacheco
R. S. Couto
7
27
0
01 May 2020
Enhanced Self-Perception in Mixed Reality: Egocentric Arm Segmentation
  and Database with Automatic Labelling
Enhanced Self-Perception in Mixed Reality: Egocentric Arm Segmentation and Database with Automatic Labelling
Ester González-Sosa
Pablo Pérez
Ruben Tolosana
R. Kachach
Á. Villegas
EgoV
22
15
0
27 Mar 2020
Edge Intelligence: Architectures, Challenges, and Applications
Edge Intelligence: Architectures, Challenges, and Applications
Dianlei Xu
Tong Li
Yong Li
Xiang Su
Sasu Tarkoma
Tao Jiang
Jon Crowcroft
Pan Hui
53
29
0
26 Mar 2020
HierTrain: Fast Hierarchical Edge AI Learning with Hybrid Parallelism in
  Mobile-Edge-Cloud Computing
HierTrain: Fast Hierarchical Edge AI Learning with Hybrid Parallelism in Mobile-Edge-Cloud Computing
Deyin Liu
Xu Chen
Zhi Zhou
Qing Ling
40
46
0
22 Mar 2020
FLAME: A Self-Adaptive Auto-labeling System for Heterogeneous Mobile
  Processors
FLAME: A Self-Adaptive Auto-labeling System for Heterogeneous Mobile Processors
Jie Liu
Jiawen Liu
Zhen Xie
Dong Li
27
5
0
03 Mar 2020
MDLdroid: a ChainSGD-reduce Approach to Mobile Deep Learning for
  Personal Mobile Sensing
MDLdroid: a ChainSGD-reduce Approach to Mobile Deep Learning for Personal Mobile Sensing
Yu Zhang
Tao Gu
Xi Zhang
FedML
22
21
0
07 Feb 2020
Acoustic Scene Analysis using Analog Spiking Neural Network
Acoustic Scene Analysis using Analog Spiking Neural Network
Anand Kumar Mukhopadhyay
Moses Prabhakar Naligala
Divya Lakshmi Duggisetty
I. Chakrabarti
M. Sharad
13
1
0
23 Dec 2019
PreVIous: A Methodology for Prediction of Visual Inference Performance
  on IoT Devices
PreVIous: A Methodology for Prediction of Visual Inference Performance on IoT Devices
Delia Velasco-Montero
Jorge Fernández-Berni
R. Carmona-Galán
Á. Rodríguez-Vázquez
30
21
0
13 Dec 2019
Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge
  Computing
Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing
En Li
Liekang Zeng
Zhi Zhou
Xu Chen
12
616
0
04 Oct 2019
SAFA: a Semi-Asynchronous Protocol for Fast Federated Learning with Low
  Overhead
SAFA: a Semi-Asynchronous Protocol for Fast Federated Learning with Low Overhead
A. Masullo
Ligang He
Toby Perrett
Rui Mao
Carsten Maple
Majid Mirmehdi
25
301
0
03 Oct 2019
Guardians of the Deep Fog: Failure-Resilient DNN Inference from Edge to
  Cloud
Guardians of the Deep Fog: Failure-Resilient DNN Inference from Edge to Cloud
Ashkan Yousefpour
Siddartha Devic
Brian Q. Nguyen
Aboudy Kreidieh
Alan Liao
Alexandre M. Bayen
J. Jue
FedML
GNN
18
23
0
03 Sep 2019
Edge Intelligence: The Confluence of Edge Computing and Artificial
  Intelligence
Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence
Shuiguang Deng
Hailiang Zhao
Weijia Fang
Jianwei Yin
Schahram Dustdar
Albert Y. Zomaya
74
606
0
02 Sep 2019
Cheetah: Mixed Low-Precision Hardware & Software Co-Design Framework for
  DNNs on the Edge
Cheetah: Mixed Low-Precision Hardware & Software Co-Design Framework for DNNs on the Edge
H. F. Langroudi
Zachariah Carmichael
David Pastuch
Dhireesha Kudithipudi
22
24
0
06 Aug 2019
Machine Learning at the Network Edge: A Survey
Machine Learning at the Network Edge: A Survey
M. G. Sarwar Murshed
Chris Murphy
Daqing Hou
Nazar Khan
Ganesh Ananthanarayanan
Faraz Hussain
38
378
0
31 Jul 2019
Deep Learning Training on the Edge with Low-Precision Posits
Deep Learning Training on the Edge with Low-Precision Posits
H. F. Langroudi
Zachariah Carmichael
Dhireesha Kudithipudi
MQ
21
14
0
30 Jul 2019
Convergence of Edge Computing and Deep Learning: A Comprehensive Survey
Convergence of Edge Computing and Deep Learning: A Comprehensive Survey
Xiaofei Wang
Yiwen Han
Victor C. M. Leung
Dusit Niyato
Xueqiang Yan
Xu Chen
22
978
0
19 Jul 2019
Edge Intelligence: Paving the Last Mile of Artificial Intelligence with
  Edge Computing
Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing
Zhi Zhou
Xu Chen
En Li
Liekang Zeng
Ke Luo
Junshan Zhang
44
1,421
0
24 May 2019
Improving Device-Edge Cooperative Inference of Deep Learning via 2-Step
  Pruning
Improving Device-Edge Cooperative Inference of Deep Learning via 2-Step Pruning
Wenqi Shi
Yunzhong Hou
Sheng Zhou
Z. Niu
Yang Zhang
Lu Geng
19
83
0
08 Mar 2019
In-Edge AI: Intelligentizing Mobile Edge Computing, Caching and
  Communication by Federated Learning
In-Edge AI: Intelligentizing Mobile Edge Computing, Caching and Communication by Federated Learning
Xiaofei Wang
Yiwen Han
Chenyang Wang
Qiyang Zhao
Xu Chen
Min Chen
11
798
0
19 Sep 2018
Follow Me at the Edge: Mobility-Aware Dynamic Service Placement for
  Mobile Edge Computing
Follow Me at the Edge: Mobility-Aware Dynamic Service Placement for Mobile Edge Computing
Ouyang Tao
Zhi Zhou
Xu Chen
8
384
0
14 Sep 2018
Previous
12