ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.07504
  4. Cited By
A Latent Variable Approach to Gaussian Process Modeling with Qualitative
  and Quantitative Factors
v1v2 (latest)

A Latent Variable Approach to Gaussian Process Modeling with Qualitative and Quantitative Factors

19 June 2018
Yichi Zhang
Siyu Tao
Wei Chen
D. Apley
ArXiv (abs)PDFHTML

Papers citing "A Latent Variable Approach to Gaussian Process Modeling with Qualitative and Quantitative Factors"

29 / 29 papers shown
Title
Distributional encoding for Gaussian process regression with qualitative inputs
Sébastien Da Veiga
UQCV
92
0
0
05 Jun 2025
Weighted Euclidean Distance Matrices over Mixed Continuous and Categorical Inputs for Gaussian Process Models
Mingyu Pu
Songhao Wang
Haowei Wang
Szu Hui Ng
78
0
0
04 Mar 2025
Gearing Gaussian process modeling and sequential design towards
  stochastic simulators
Gearing Gaussian process modeling and sequential design towards stochastic simulators
M. Binois
A. Fadikar
Abby Stevens
147
0
0
10 Dec 2024
CAGES: Cost-Aware Gradient Entropy Search for Efficient Local Multi-Fidelity Bayesian Optimization
CAGES: Cost-Aware Gradient Entropy Search for Efficient Local Multi-Fidelity Bayesian Optimization
Wei-Ting Tang
J. Paulson
58
1
0
13 May 2024
Adaptive Catalyst Discovery Using Multicriteria Bayesian Optimization
  with Representation Learning
Adaptive Catalyst Discovery Using Multicriteria Bayesian Optimization with Representation Learning
Jie Chen
Pengfei Ou
Yuxin Chang
Hengrui Zhang
Xiao-Yan Li
E. H. Sargent
Wei Chen
70
0
0
18 Apr 2024
Transfer Learning Bayesian Optimization to Design Competitor DNA
  Molecules for Use in Diagnostic Assays
Transfer Learning Bayesian Optimization to Design Competitor DNA Molecules for Use in Diagnostic Assays
Ruby Sedgwick
John P. Goertz
Molly M. Stevens
Ruth Misener
Mark van der Wilk
BDL
59
0
0
27 Feb 2024
Interpretable Multi-Source Data Fusion Through Latent Variable Gaussian
  Process
Interpretable Multi-Source Data Fusion Through Latent Variable Gaussian Process
S. Ravi
Yigitcan Comlek
Wei Chen
Arjun Pathak
Vipul Gupta
...
Ghanshyam Pilania
Piyush Pandita
Sayan Ghosh
Nathaniel Mckeever
Liping Wang
30
1
0
06 Feb 2024
A Latent Variable Approach for Non-Hierarchical Multi-Fidelity Adaptive
  Sampling
A Latent Variable Approach for Non-Hierarchical Multi-Fidelity Adaptive Sampling
Yi-Ping Chen
Liwei Wang
Yigitcan Comlek
Wei Chen
49
10
0
05 Oct 2023
Bayesian Quality-Diversity approaches for constrained optimization
  problems with mixed continuous, discrete and categorical variables
Bayesian Quality-Diversity approaches for constrained optimization problems with mixed continuous, discrete and categorical variables
Loïc Brevault
M. Balesdent
83
2
0
11 Sep 2023
SMT 2.0: A Surrogate Modeling Toolbox with a focus on Hierarchical and
  Mixed Variables Gaussian Processes
SMT 2.0: A Surrogate Modeling Toolbox with a focus on Hierarchical and Mixed Variables Gaussian Processes
P. Saves
R. Lafage
N. Bartoli
Y. Diouane
J. Bussemaker
T. Lefebvre
John T. Hwang
J. Morlier
J. Martins
MoE
79
71
0
23 May 2023
Rapid Design of Top-Performing Metal-Organic Frameworks with Qualitative
  Representations of Building Blocks
Rapid Design of Top-Performing Metal-Organic Frameworks with Qualitative Representations of Building Blocks
Yigitcan Comlek
T. D. Pham
R. Snurr
Wei Chen
AI4CE
46
18
0
17 Feb 2023
Multi-Fidelity Cost-Aware Bayesian Optimization
Multi-Fidelity Cost-Aware Bayesian Optimization
Zahra Zanjani Foumani
Mehdi Shishehbor
Amin Yousefpour
Ramin Bostanabad
56
49
0
04 Nov 2022
Fully Bayesian inference for latent variable Gaussian process models
Fully Bayesian inference for latent variable Gaussian process models
Suraj Yerramilli
Akshay Iyer
Wei Chen
D. Apley
45
3
0
04 Nov 2022
Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic
  Reparameterization
Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparameterization
Sam Daulton
Xingchen Wan
David Eriksson
Maximilian Balandat
Michael A. Osborne
E. Bakshy
96
39
0
18 Oct 2022
Multi-fidelity wavelet neural operator with application to uncertainty
  quantification
Multi-fidelity wavelet neural operator with application to uncertainty quantification
A. Thakur
Tapas Tripura
S. Chakraborty
59
12
0
11 Aug 2022
Uncertainty-Aware Mixed-Variable Machine Learning for Materials Design
Uncertainty-Aware Mixed-Variable Machine Learning for Materials Design
Hengrui Zhang
WeiWayneChen
Akshay Iyer
D. Apley
Wei Chen
AI4CE
73
12
0
11 Jul 2022
Hybrid Parameter Search and Dynamic Model Selection for Mixed-Variable
  Bayesian Optimization
Hybrid Parameter Search and Dynamic Model Selection for Mixed-Variable Bayesian Optimization
Hengrui Luo
Younghyun Cho
James Demmel
Xin Li
Yang Liu
56
7
0
03 Jun 2022
Multi-objective robust optimization using adaptive surrogate models for
  problems with mixed continuous-categorical parameters
Multi-objective robust optimization using adaptive surrogate models for problems with mixed continuous-categorical parameters
M. Moustapha
A. Galimshina
G. Habert
Bruno Sudret
61
10
0
03 Mar 2022
t-METASET: Tailoring Property Bias of Large-Scale Metamaterial Datasets
  through Active Learning
t-METASET: Tailoring Property Bias of Large-Scale Metamaterial Datasets through Active Learning
Doksoo Lee
Yu-Chin Chan
Wei Chen
Liwei Wang
Anton van Beek
Wei Chen
AI4CE
60
20
0
21 Feb 2022
Data Fusion with Latent Map Gaussian Processes
Data Fusion with Latent Map Gaussian Processes
Nicholas Oune
J. Eweis-Labolle
Ramin Bostanabad
43
31
0
04 Dec 2021
A comparison of mixed-variables Bayesian optimization approaches
A comparison of mixed-variables Bayesian optimization approaches
Jhouben Cuesta Ramirez
Rodolphe Le Riche
O. Roustant
G. Perrin
Cédric Durantin
A. Glière
56
19
0
30 Oct 2021
Data-Driven Multiscale Design of Cellular Composites with Multiclass
  Microstructures for Natural Frequency Maximization
Data-Driven Multiscale Design of Cellular Composites with Multiclass Microstructures for Natural Frequency Maximization
Liwei Wang
Anton van Beek
Daicong Da
Yu-Chin Chan
Ping Zhu
Wei Chen
AI4CE
42
43
0
11 Jun 2021
Latent Map Gaussian Processes for Mixed Variable Metamodeling
Latent Map Gaussian Processes for Mixed Variable Metamodeling
Nicholas Oune
Ramin Bostanabad
55
34
0
07 Feb 2021
Data-Driven Topology Optimization with Multiclass Microstructures using
  Latent Variable Gaussian Process
Data-Driven Topology Optimization with Multiclass Microstructures using Latent Variable Gaussian Process
Liwei Wang
Siyu Tao
Ping Zhu
Wei Chen
AI4CE
45
61
0
27 Jun 2020
Gryffin: An algorithm for Bayesian optimization of categorical variables
  informed by expert knowledge
Gryffin: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge
Florian Hase
Matteo Aldeghi
Riley J. Hickman
L. Roch
Alán Aspuru-Guzik
101
109
0
26 Mar 2020
Bayesian optimization of variable-size design space problems
Bayesian optimization of variable-size design space problems
J. Pelamatti
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
Yannick Guerin
80
29
0
06 Mar 2020
Bayesian Optimization for Materials Design with Mixed Quantitative and
  Qualitative Variables
Bayesian Optimization for Materials Design with Mixed Quantitative and Qualitative Variables
Yichi Zhang
D. Apley
Wei Chen
AI4CE
66
217
0
03 Oct 2019
Data-Centric Mixed-Variable Bayesian Optimization For Materials Design
Data-Centric Mixed-Variable Bayesian Optimization For Materials Design
Akshay Iyer
Yichi Zhang
A. Prasad
Siyu Tao
Yixing Wang
L. Schadler
L. Brinson
Wei Chen
32
23
0
04 Jul 2019
Group kernels for Gaussian process metamodels with categorical inputs
Group kernels for Gaussian process metamodels with categorical inputs
O. Roustant
Esperan Padonou
Yves Deville
Aloïs Clément
G. Perrin
J. Giorla
H. Wynn
67
53
0
07 Feb 2018
1