ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.07139
  4. Cited By
Using J-K fold Cross Validation to Reduce Variance When Tuning NLP
  Models

Using J-K fold Cross Validation to Reduce Variance When Tuning NLP Models

19 June 2018
Henry B. Moss
David S. Leslie
Paul Rayson
ArXivPDFHTML

Papers citing "Using J-K fold Cross Validation to Reduce Variance When Tuning NLP Models"

2 / 2 papers shown
Title
Distributed Representations of Atoms and Materials for Machine Learning
Distributed Representations of Atoms and Materials for Machine Learning
Luis M. Antunes
R. Grau‐Crespo
K. Butler
AI4CE
18
26
0
30 Jul 2021
MUMBO: MUlti-task Max-value Bayesian Optimization
MUMBO: MUlti-task Max-value Bayesian Optimization
Henry B. Moss
David S. Leslie
Paul Rayson
25
33
0
22 Jun 2020
1