Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.06573
Cited By
Distributed learning with compressed gradients
18 June 2018
Sarit Khirirat
Hamid Reza Feyzmahdavian
M. Johansson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distributed learning with compressed gradients"
22 / 22 papers shown
Title
DARE the Extreme: Revisiting Delta-Parameter Pruning For Fine-Tuned Models
Wenlong Deng
Yize Zhao
V. Vakilian
Minghui Chen
Xiaoxiao Li
Christos Thrampoulidis
45
3
0
12 Oct 2024
Rendering Wireless Environments Useful for Gradient Estimators: A Zero-Order Stochastic Federated Learning Method
Elissa Mhanna
Mohamad Assaad
49
1
0
30 Jan 2024
Federated Learning is Better with Non-Homomorphic Encryption
Konstantin Burlachenko
Abdulmajeed Alrowithi
Fahad Ali Albalawi
Peter Richtárik
FedML
47
6
0
04 Dec 2023
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex Optimization
Zhen Qin
Zhishuai Liu
Pan Xu
26
1
0
24 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
45
5
0
15 Oct 2023
Adaptive Compression for Communication-Efficient Distributed Training
Maksim Makarenko
Elnur Gasanov
Rustem Islamov
Abdurakhmon Sadiev
Peter Richtárik
44
13
0
31 Oct 2022
Federated Optimization Algorithms with Random Reshuffling and Gradient Compression
Abdurakhmon Sadiev
Grigory Malinovsky
Eduard A. Gorbunov
Igor Sokolov
Ahmed Khaled
Konstantin Burlachenko
Peter Richtárik
FedML
16
21
0
14 Jun 2022
Linear Stochastic Bandits over a Bit-Constrained Channel
A. Mitra
Hamed Hassani
George J. Pappas
42
8
0
02 Mar 2022
Finite-Sum Coupled Compositional Stochastic Optimization: Theory and Applications
Bokun Wang
Tianbao Yang
48
31
0
24 Feb 2022
FL_PyTorch: optimization research simulator for federated learning
Konstantin Burlachenko
Samuel Horváth
Peter Richtárik
FedML
48
18
0
07 Feb 2022
BEER: Fast
O
(
1
/
T
)
O(1/T)
O
(
1/
T
)
Rate for Decentralized Nonconvex Optimization with Communication Compression
Haoyu Zhao
Boyue Li
Zhize Li
Peter Richtárik
Yuejie Chi
32
49
0
31 Jan 2022
Comfetch: Federated Learning of Large Networks on Constrained Clients via Sketching
Tahseen Rabbani
Brandon Yushan Feng
Marco Bornstein
Kyle Rui Sang
Yifan Yang
Arjun Rajkumar
A. Varshney
Furong Huang
FedML
59
2
0
17 Sep 2021
FedNL: Making Newton-Type Methods Applicable to Federated Learning
M. Safaryan
Rustem Islamov
Xun Qian
Peter Richtárik
FedML
33
78
0
05 Jun 2021
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
Konstantin Mishchenko
Bokun Wang
D. Kovalev
Peter Richtárik
75
15
0
16 Feb 2021
Distributed Second Order Methods with Fast Rates and Compressed Communication
Rustem Islamov
Xun Qian
Peter Richtárik
34
51
0
14 Feb 2021
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
On Communication Compression for Distributed Optimization on Heterogeneous Data
Sebastian U. Stich
53
23
0
04 Sep 2020
Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization
Zhize Li
D. Kovalev
Xun Qian
Peter Richtárik
FedML
AI4CE
29
135
0
26 Feb 2020
Uncertainty Principle for Communication Compression in Distributed and Federated Learning and the Search for an Optimal Compressor
M. Safaryan
Egor Shulgin
Peter Richtárik
32
61
0
20 Feb 2020
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
13
179
0
09 Feb 2020
Natural Compression for Distributed Deep Learning
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
21
151
0
27 May 2019
On Maintaining Linear Convergence of Distributed Learning and Optimization under Limited Communication
Sindri Magnússon
H. S. Ghadikolaei
Na Li
27
81
0
26 Feb 2019
1