Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.05357
Cited By
Deep Multi-Output Forecasting: Learning to Accurately Predict Blood Glucose Trajectories
14 June 2018
Ian Fox
Lynn Ang
M. Jaiswal
R. Pop-Busui
Jenna Wiens
OOD
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Multi-Output Forecasting: Learning to Accurately Predict Blood Glucose Trajectories"
17 / 17 papers shown
Title
GlucoBench: Curated List of Continuous Glucose Monitoring Datasets with Prediction Benchmarks
Renat Sergazinov
Elizabeth Chun
Valeriya Rogovchenko
Nathaniel Fernandes
Nicholas Kasman
I. Gaynanova
AI4TS
29
3
0
08 Oct 2024
A Survey on Privacy of Health Data Lifecycle: A Taxonomy, Review, and Future Directions
Sunanda Bose
D. Marijan
19
3
0
09 Nov 2023
Likelihood-based generalization of Markov parameter estimation and multiple shooting objectives in system identification
Nicholas Galioto
Alex Arkady Gorodetsky
31
1
0
20 Dec 2022
Gluformer: Transformer-Based Personalized Glucose Forecasting with Uncertainty Quantification
Renat Sergazinov
Mohammadreza Armandpour
I. Gaynanova
BDL
AI4TS
MedIm
38
11
0
09 Sep 2022
EgPDE-Net: Building Continuous Neural Networks for Time Series Prediction with Exogenous Variables
Penglei Gao
Xi Yang
Rui Zhang
Ping Guo
John Y. Goulermas
Kaizhu Huang
AI4TS
21
5
0
03 Aug 2022
Deep Personalized Glucose Level Forecasting Using Attention-based Recurrent Neural Networks
Mohammadreza Armandpour
Brian Kidd
Yu Du
Jianhua Z. Huang
16
14
0
02 Jun 2021
Recursive input and state estimation: A general framework for learning from time series with missing data
Alberto García-Durán
Robert West
AI4TS
17
2
0
17 Apr 2021
Deep Time Series Forecasting with Shape and Temporal Criteria
Vincent Le Guen
Nicolas Thome
AI4TS
32
27
0
09 Apr 2021
Domain Adaptation for Time Series Forecasting via Attention Sharing
Xiaoyong Jin
Youngsuk Park
Danielle C. Maddix
Bernie Wang
Xifeng Yan
TTA
OOD
AI4TS
104
75
0
13 Feb 2021
Stacked LSTM Based Deep Recurrent Neural Network with Kalman Smoothing for Blood Glucose Prediction
Md Fazle Rabby
Yazhou Tu
Md. Imran Hossen
Insup Lee
Anthony Maida
X. Hei
32
114
0
18 Jan 2021
Do We Really Need Deep Learning Models for Time Series Forecasting?
Shereen Elsayed
Daniela Thyssens
Ahmed Rashed
H. Jomaa
Lars Schmidt-Thieme
AI4TS
16
105
0
06 Jan 2021
Explainable Tensorized Neural Ordinary Differential Equations forArbitrary-step Time Series Prediction
Penglei Gao
Xi Yang
Rui Zhang
Kaizhu Huang
AI4TS
14
15
0
26 Nov 2020
Deep Reinforcement Learning for Closed-Loop Blood Glucose Control
Ian Fox
Joyce M. Lee
R. Pop-Busui
Jenna Wiens
BDL
OffRL
22
50
0
18 Sep 2020
Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models
Vincent Le Guen
Nicolas Thome
AI4TS
32
134
0
19 Sep 2019
Using Contextual Information to Improve Blood Glucose Prediction
Mohammad Akbari
R. Chunara
14
6
0
24 Aug 2019
A Survey of Challenges and Opportunities in Sensing and Analytics for Cardiovascular Disorders
N. Hurley
E. Spatz
H. Krumholz
R. Jafari
B. Mortazavi
19
1
0
12 Aug 2019
Exploring Interpretable LSTM Neural Networks over Multi-Variable Data
Tian Guo
Tao R. Lin
Nino Antulov-Fantulin
AI4TS
26
154
0
28 May 2019
1