ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.03992
  4. Cited By
Real-time coherent diffraction inversion using deep generative networks

Real-time coherent diffraction inversion using deep generative networks

7 June 2018
Mathew J. Cherukara
Y. Nashed
R. Harder
    DiffM
ArXivPDFHTML

Papers citing "Real-time coherent diffraction inversion using deep generative networks"

7 / 7 papers shown
Title
Neural Network Methods for Radiation Detectors and Imaging
Neural Network Methods for Radiation Detectors and Imaging
S. Lin
S. Ning
H. Zhu
T. Zhou
C. L. Morris
S. Clayton
M. Cherukara
R. T. Chen
Z. Wang
AI4CE
32
5
0
09 Nov 2023
Investigating the robustness of a learning-based method for quantitative
  phase retrieval from propagation-based x-ray phase contrast measurements
  under laboratory conditions
Investigating the robustness of a learning-based method for quantitative phase retrieval from propagation-based x-ray phase contrast measurements under laboratory conditions
Rucha Deshpande
A. Avachat
F. Brooks
M. Anastasio
17
5
0
02 Nov 2022
Practical Phase Retrieval Using Double Deep Image Priors
Practical Phase Retrieval Using Double Deep Image Priors
Zhong Zhuang
David Yang
F. Hofmann
David A. Barmherzig
Ju Sun
38
13
0
02 Nov 2022
Amortized Bayesian Inference of GISAXS Data with Normalizing Flows
Amortized Bayesian Inference of GISAXS Data with Normalizing Flows
Maksim Zhdanov
L. Randolph
T. Kluge
M. Nakatsutsumi
C. Gutt
M. Ganeva
Nico Hoffmann
34
0
0
04 Oct 2022
AutoPhaseNN: Unsupervised Physics-aware Deep Learning of 3D Nanoscale
  Bragg Coherent Diffraction Imaging
AutoPhaseNN: Unsupervised Physics-aware Deep Learning of 3D Nanoscale Bragg Coherent Diffraction Imaging
Yudong Yao
Henry Chan
S. Sankaranarayanan
Prasanna Balaprakash
R. Harder
Mathew J. Cherukara
25
46
0
28 Sep 2021
Exascale Deep Learning for Scientific Inverse Problems
Exascale Deep Learning for Scientific Inverse Problems
N. Laanait
Josh Romero
Junqi Yin
M. T. Young
Sean Treichler
V. Starchenko
A. Borisevich
Alexander Sergeev
Michael A. Matheson
FedML
BDL
35
29
0
24 Sep 2019
Deep Hybrid Scattering Image Learning
Deep Hybrid Scattering Image Learning
Mu Yang
Zhenghao Liu
Ze-Di Cheng
Jin-Shi Xu
Chuan‐Feng Li
G. Guo
13
29
0
19 Sep 2018
1